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Abstract

An essential capability of humans is the effortless identification of useful tasks based on vi-
sual cues in everyday situations. Object appearances and contexts are integrated and processed
to differentiate plausible from implausible actions. In this work, we study how to teach this abil-
ity to robots. In contrast to many tasks in computer vision where the goal is an accurate scene
description (object labels, caption) of the present scene here the challenge is to make reasonable
guesses about the future outcome of an action. To this end, we collect a dataset that associates im-
ages with probabilities over a set of actions. A convolutional neural network is trained to match
these ground truth plausibility scores using this dataset. We compare the performance of state-of-
the-art encoder architectures and specifically analyze the role of contextual cues quantitatively.
While the object recognition capabilities of the encoder have a strong impact on performance,
using context did not lead to substantial improvements. We show qualitatively the utility of such
a system for robotic action selection in a household setting.

1 Introduction

In a given situation humans often have plenty of action possibilities, but commonly only a tiny
fraction is appropriate. Making such action decisions in everyday life feels effortless, which is
partly due to our common sense knowledge. The sense of appropriateness that guides the decision
is probably not innate but learned, while growing up. Robotic systems, however, naturally lack this
skill and therefore can exhibit a behavior that is surprising and unexpected for humans due to the
robot’s misinterpretation of a situation. Thus, transferring this kind of common sense knowledge to
machines would have a great impact on their usability, in particular for situations where interaction
with humans is required.

The problem of representing common sense knowledge itself is not new and has been addressed
for decades. Most of these past approaches to represent common sense facts are symbolic, i.e. they
assume that knowledge can be expressed in terms of a finite set of discrete symbols and their
relations. While this comes with the advantage of interpretability, it is unlikely that all knowledge
can be expressed in this form, especially not inherently continuous facts as the likelihood of eating
from this dish decreases with its level of dirtiness. Examples of this kind of knowledge representation
can be found in the psychological literature where action possibilities (affordances) are modeled as
probabilistic functions instead of binary attributes [7]. Symbolic approaches fail if they only take
class labels into account as contextual and appearance details are crucial for such a task. Of course,
with quite some effort these aspects can be incorporated into symbolic systems, too. However, for
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Figure 1: Sketch of the idea presented in this paper: Small changes in the image can have a vast
impact on the plausibility of actions.

this all relevant details need to be known and specified a-priori. If the fill-level of a cup is critical
for drinkability, a logical variable ”fill-level” needs to be added to the system along with an image
recognition component that can detect it. The same is true for each and every such object and
situation-dependent aspect leading to a massive effort in pre-defining all of this in the right way.
Different from that, the advantage of our approach is that there is no need to explicitly model the
space of all variables influencing an action as the system learns these relationships end-to-end.

In this article we address the novel problem of rating how plausible certain actions are. An
illustration of this idea is shown in Fig. 1. For this purpose, we develop a hybrid system that repre-
sents common sense knowledge in a distributed, implicit way but also relies on a hard coded action
compatibility table that defines if actions can in-principle be conducted on different object classes.
We take images from the OpenImages dataset [16] and then ask humans to rate how plausible they
consider certain actions. Having obtained a such-labeled dataset, we train a neural network to
predict action plausibilities, which relies on the implicit encoding into the network of the human
common sense knowledge during training. This way rules like if dirty dishes are close to each other
stack them or if room is empty use remote control to turn off TV could be learned from data. Importantly,
after training, the system is able to directly map from pixels to action plausibility probabilities and
a symbolic representation is not any longer needed.

Simple symbolic mappings (like object labels mapped to actions) would be doomed anyhow,
because commonly object classes are very broad (high variance). For example the class ”cup”
contains images of full and empty cups as well as cups with and without handle. However, actions
often depend on the state of the object, which cannot be inferred from the label only. Often, the
state can be much more informative concerning an action than the object label, since an action can
be compatible with a broad range of object classes in a certain state.

2 Related Work

We are not aware of any approach that explicitly deals with the problem of rating actions with
respect to their plausibility from observed scenes. However, several related tasks have been ad-
dressed before. Here we present an overview, differentiated by the input data the methods use.

2



Video-based Methods A large body of work in anticipation operates on videos, which seems
natural since movies provide a large temporal context to base predictions on. In the work of Lan
et al. [18], the next action in a TV show is predicted based on previous frames and object bounding
boxes. For this a hierarchical video representation called movemes is proposed. The anticipation
of human activities that is addressed in Koppula and Saxena [14] can be considered a closely re-
lated task. They model human pose, object affordances, object locations and sub-activities in a
graph that changes over time through a temporal conditional random field. By sampling from this
model, prospective activities can be predicted. These possible futures could also involve actions
we are interested in. While their dataset only comprises 120 scenes, we prefer a larger number of
scenes to allow for more detail within scenes. Vondrick et al. [29] model the development of visual
feature representations (obtained from a CNN) over time in a self-supervised setting. Some video
recognition approaches have been evaluated in an early recognition setting [35, 37]. Given only a
certain fraction (e.g. 20%) of the first frames of an action, the goal is to determine the action, which
can also be seen as a weak form of anticipation.

Our task differs from the tasks addressed in these paper in using only a single RGB image
as input. This implies that models cannot rely on patterns that occur in sequences of actions to
generate predictions but have to identify cues only from the provided single image.

Still Image-based Methods Besides relying on video, anticipations can be made from static im-
ages. For example, Walker et al. [31] predict pixel-wise trajectories. For each pixel a prediction
of how it will evolve in the future is conducted using an autoencoder. A similar idea is pursued
by Chao et al. [2]. Instead of dense pixel trajectories, they specialize entirely on anticipating pose
dynamics. Similar to us, Vu et al. [30] predict distributions over plausible actions from images for
which they collected the SUN Action dataset. While they predict general actions for whole scenes,
we focus on more specific actions considering only individual objects. Fouhey and Zitnick [6] fol-
low a single image setting, too, but they use abstract scene representations to learn what might
happen next. Instead of predicting specific actions they consider the dynamics of objects. In the
work of Qi et al. [23], interactions between humans and objects are studied in images as well as in
videos. Scenes are parsed into a graph that indicates relations between objects. In one experiment,
this graph is used to anticipate future activities on the CAD-120 dataset [15].

Psychology and the Concept of Affordances Action plausibility scoring is related to the concept
of affordances coined by Gibson [8] and later refined by Gibson [9, Chapter 8]. While affordances
indicate what interactions with the environment are possible for an agent, they do not come with
any notion of preference. No differentiation about what action is more likely to happen takes place,
physical compatibility is the only aspect that matters. Hence, affordances can be considered to be
less-abstract than the plausibilities we propose in this paper. Affordances have been studied in
various forms: for whole images [36], as poses [10], bounding boxes [5, 34], densely for every pixel
[19–21, 24, 25] or from video [15, 32]. However, existing research is not limited to discovering action
possibilities: Mechanisms that drive the selection of actions have been investigated in neuroscience
[1] including the creation of computational models [3, 27].

Note that the concept of affordances centers strongly on the objects, essentially asking: which
actions are suggested by different objects? Agents, humans or robots, however many times are
rather plan-driven and they ask this question the other way round: which object can I use for
a planned action? To better accommodate both types of queries, recently the concept of Object-
Action Complexes (OACs) had been introduced [17, 33] that assumes that objects and (planned)
actions are inseparably intertwined. Our current study takes this one step further stating that
objects with certain properties and actions are intertwined. For example full cups are for drinking,
dirty cups for cleaning, etc.
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3 The PlausiblAct Dataset

In this section, we introduce the PlausiblAct dataset which associates images with a probability
distribution over a set of ten actions. We explain the design of the dataset from the selection of
actions via collecting data to generating probability distributions from the gathered annotations.
The images of PlausiblAct come from the OpenImages dataset [16], which contains scenes (im-
ages) showing multiple objects with corresponding bounding boxes. For our dataset, we extract
individual objects and denote them as instances.

3.1 Choice of Actions and Ratings

In contrast to object names, it is more challenging to assign actions. Actions are to some degree
subjective, depend on a state (e.g. hungry, tired) or on past actions. Therefore, a key challenge in
this work is to constrain the setting in such a way that actions become less subjective. To this end,
we focus on actions that tend to be unconditional. This involves actions the utility of which imme-
diately pops up when a scene is perceived without depending on the state of the observer. We say
“tend to” because even under these considerations the here-chosen actions remain somewhat con-
ditioned on the state but to a smaller extent than many others. Specifically actions which are either
plan-driven (e.g. to hammer a nail to fix something) or mood-driven (e.g. watch TV, read a book)
are excluded. In such cases we would not expect the actions to be reliably rate-able as raters might
assume different states leading to inconsistent ratings. We identify a set of ten actionsA that is com-
patible with these principles. They are presented in Fig. 2. In addition to actions, we need to define
possible ratings for an action instance. In order to reduce the cognitive load for the raters we follow
a simple approach and use only three possible ratings R = {impossible, implausible,plausible}.
While impossible refers to the physical layout of a scene, plausibility decisions often depend on the
context within an image.

For each action of these ten actions, we manually enumerate the complete subset of compatible
object classes from all 600 object classes in OpenImages [16] (see appendix). Compatible means
that, based on the object class name, it is potentially possible to conduct the action on an object
of this class. E.g. a glass is potentially compatible with the action drinking (but not always, as it
can be empty). We will implicitly assume that incompatible object-action pairs (as specified by the
table in the appendix) are implicitly rated as impossible. For instance, let us assume there were
only the actions eat and sit on and the object cake. Then defining the set of eat-able objects to be
{cake} implies that the cake is never sit-able.

3.2 Scene and Instance Selection

Having defined compatibility between actions and objects, the next step is to select good scenes
from the set of remaining scenes. Note that people do not take photos randomly. They rather
focus on beautiful and tasty things. E.g. food is most often photographed before and not during
eating. This leads to the fact that image databases are really representative illustrations of reality
but collections of cherry-picked moments. However, to generate reasonable action plausibilities we
need a good coverage of all situations. In the following we introduce mechanisms that counteract
these biases.

First, scenes are excluded when one of these criteria is met:

• Small coverage (less than 2% of all pixels), as the crop would not be recognizable.

• Large coverage (more than 70% of all pixels), as there would be little room for context.
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Figure 2: Top-left: Frequencies of the ratings for each action (note the logarithmic scale). Top-right:
Screen-shot of the annotation tool.

• Image with humans as this would often require the rater (and later-on also the system) to
infer intention, which we consider beyond the scope of this paper.

Furthermore, we maintain only one bounding box if two bounding boxes overlap with an inter-
section over union of over 0.5. Then we use the one for the less frequent class. Lastly, we manually
remove scenes showing humans that were not considered by the labels and hence slipped through
our previous filtering mechanism. Additionally, product photos and images having poor quality
are removed.

Lastly, we put an upper limit on the number of occurrences of each object class. To prefer larger
objects we sort all instances descending by size and then select the first 1000 instances of each object
class which increases the variety of the included object classes.

3.3 Collection of Annotations

Annotations are gathered using a web-based interface. After receiving instructions and being
shown example ratings, raters could explore a large number of instances for each action. The
order of instances is shuffled individually for each rater. Instances to be rated (with impossible,
implausible or plausible) can be freely chosen by the users.

Rater instructions All raters received explicit instructions. Pilot experiments suggest that these
are critical for obtaining a reasonable inter-rater reliability as the annotation of actions can be highly
ambiguous. Following our observations from the pilot experiments, we instructed raters to follow
three principles. These are the original instructions presented to the raters:

• Optimism about the Unseen: If you are uncertain about some unseen aspects of the scene,
please assume the most favorable situation for the given action.

• Immediate Acting: Consider the plausibility of conducting the action without delay. Do not
assume that the action execution could wait.

• Static Scene: Do not assume changes to the scene that make the action possible that go be-
yond the definition of the action. Only consider the presented situation and pay attention to
the action definition.
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Figure 3: Rating distributions for all actions and frequent objects. Note, ratings are often not
uniformly distributed for objects. Incompatible combinations of action and object are left blank.

In addition, we showed to the raters eleven examples of how these principles are supposed to be
interpreted.

Consider rating a scene involving an opaque bottle on a table regarding the action drink. The
principles above mean that the action should be rated by assuming that the bottle contains drink-
able liquid (optimism), the table layout cannot be changed (static scene) and we cannot conduct
other actions before drinking (like filling the bottle first).

While we first experimented with a sequential design, where only one image at a time is pre-
sented to the rater, we finally decided to employ a multi-image paradigm. For a given action, mul-
tiple scenes are presented and the user can freely select, which instances to annotate. This allows
for faster and more reliable annotations as hard, unclear samples can be skipped. Furthermore, this
paradigm allows us to ask the raters to provide a minimal amount of ratings for the categories im-
plausible and plausible, which results in a more balanced dataset. The web-based tool is shown in
Fig. 2 (right). We discuss inter-rater reliability in Section 4.2.4, after the explanation of the metrics
used in this work. We use the split in training, validation and test data defined by OpenImages [16].
For the training data, we allow choosing annotations freely as described above. As a consequence,
the training procedure has to deal incompletely annotated instances. For creating the ground truth
of the test data, we requested the raters to label instances completely (i.e. all compatible actions
must be rated), which enables computing meaningful metrics on the test set. For this, indicators of
missing instances are shown in the web-based interface to prompt the rater to complete it.

Annotation statistics In Fig. 2 (left) and Fig. 3 we present distributions of the user-provided rat-
ings for all actions and selected objects. In total, eight raters provided 28,046 ratings on 18,837
instances. Impossible was chosen 7,219, implausible 8,922 and possible 11,905 times.

3.4 From Annotations to Plausibilities

Having collected a set of annotations, we need to transform it to trainable data. Each instance may
have received ratings for some actions from one or more raters.
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The key idea is to train the network to match the plausibility distribution of the raters for each
instance. Not every instance suggests clear actions and often multiple ratings seem plausible. By
modeling the ground truth as a distribution over ratings we can incorporate a notion of uncer-
tainty. This approach is different from image classification, where the ground truth distribution
accumulates all mass on a single label. In our case this happens only if all raters agree. Moreover,
we predict 10 actions per image simultaneously.

Formally, for every instance i ∈ I (i.e. an object in an image) we aggregate all associated ratings
into a matrix R(i) ∈ N|A|×3. Each element R

(i)
a,r denotes the count of ratings r for action a. In

addition, a mask v(i) ∈ {0, 1}|A| is computed that indicates which rows (actions) of R(i) are valid
for an instance. This is necessary because in the training set annotations can be incomplete. Since
raters can freely choose which instances to annotate, there is no guarantee that for a given instance
all possible actions are actually rated. The values of unrated yet compatible actions in R(i) are not
informative and therefore must be excluded from the computation of the loss. Thus, later, we will
use v(i) to exclude undefined actions from being considered in the loss. Next, the ground truth
plausibility matrix P(i) is generated from R(i).

P(i)
a =


R

(i)
a∑

r R
(i)
a,r

a is compatible with instance i

[1, 0, 0] otherwise

(1)

Here the vector [1, 0, 0] is used to assign the rating impossible to all incompatible actions (as de-
scribed above).

3.5 Loss

Given an image I, the network f predicts a matrix that assigns a probability to each rating for
all actions. The rating probabilities for an action must sum to one. The loss is calculated by the
cross entropy CE between each action’s predicted rating distribution and the actual distribution
obtained from the raters, denoted by P(i).

L(i) =
1∑

a∈A v
(i)
a

∑
a∈A

CE(f(I(i))a,P
(i)
a )v(i)

a

In case an action is required but not provided the value of P is invalid and should not contribute
to the error expressed by the loss. This is realized by using the validity mask v(i).

Data Augmentation Since we have to cope with limited training data, we apply different forms
of data augmentation. This involves random cropping, adding Gaussian blur, changing gamma
and colors of the image. We control the strength of these operations with a single integer value.
The optimal value of this is determined experimentally (see Table 2).

Implementation We employ batch normalization [12] and early stopping after 7 epochs without
improvement of the validation loss. Weight updates are carried out with ADAM [13]. The code is
implemented based on the PyTorch [22] framework.

3.6 Models

We use state-of-the-art convolutional neural networks architectures that have proven to work well
for image recognition tasks. These include different variations of ResNet [11] and InceptionV4 [28].
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setting 1st input 2nd input

ignore black image -
img+mask instance image context image with instance being masked
img+full instance image context image (no masking)
only-masked context image with instance being masked -
only-full context image (no masking) -

Table 1: Input data for the different context settings

Instead of training from scratch, we initialize the networks weights from pre-training on ImageNet
[4] unless otherwise stated.

3.7 Baselines

We start our analysis by introducing two baselines:

• The mode baseline always predicts the most common rating for the depicted object. This is
somewhat unfair since the baseline uses object labels other models do not have. However,
it provides us with insights about how strongly the prediction of an action is tied to the
underlying object class.

• The ignore image baseline is identical to a normal model but does not receive any image
as input. Hence, the only way it can minimize loss is to learn the dataset distribution. This
baseline provides us with a reference to relate other scores with. If a model does not perform
better than this baseline it has not learned anything but the biases present in the dataset.

3.8 Context Representations

As stated above, instances are objects that are part of larger scenes. Hence, it might be useful
to make the entire scene accessible to the model. For incorporation of this kind of context, we
differentiate between multiple ways, which we describe in the following. Context representations
that involve a “+” imply two image inputs (instance image + some context) to the model and thus
require two separate image encoder networks.

• The trivial case ignore means ignoring the context entirely and considering only the instance’s
object.

• In the img+masked setting, we mask the object bounding box with a black rectangle. Hence,
the network has no access to the object’s visual features but has to rely only on contextual
cues. Additionally, as a second input, the instance image is shown, too.

• In the img+full setting, the entire context is shown (without masking the instance) and the
instance image is provided as a second input.

• In the only-masked setting, the entire context with the instance being masked is shown.

• In the only-full setting, the entire context is shown.

In Fig. 1 we provide an overview of the different input data types in the context settings.
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Figure 4: Illustration of how metrics are computed for one instance. Predictions of the network
and ratings of the annotators are collected in two matrices Q and P. By comparing the most likely
ratings for each, the accuracy is obtained.

3.9 Metrics

Obtaining quantitative scores for performance is a challenging task because the model’s predic-
tions and the ground truth are proper probability distributions. This is different from image clas-
sification where the ground truth distribution has only one non-zero element. Furthermore, for
each instance, all ten actions are predicted simultaneously. For calculating performance metrics,
we compare the ground truth P(i) with Q

(i)
a,r, which represents the network’s predictions for action

a and plausibility rating r of an instance i. The rating distribution sums to one, i.e.
∑

r∈RQ
(i)
a,r = 1.

All-action Accuracy (Acc) A straightforward choice to assess how well the predictions of a model
are aligned with user annotated ratings is accuracy. If the highest mass rating is identical for pre-
diction and ground truth an instance is considered to be classified correctly. We consider accuracy
in two settings: Independently for each action as described above and for all actions of an instance.
In the latter case, successful classification requires the correct prediction of all actions. The disad-
vantage of accuracy is its sensitive to the maximum. The actual distribution of the ratings apart is
ignored.

Acca(P(i),Q(i)) =

{
1 if arg max(P

(i)
a ) = arg max(Q

(i)
a )

0 otherwise

Since we require all actions to be correctly annotated, we apply a min function on all action-wise
accuracies. By averaging over all actions we obtain the single Acc score:

Acc =
1

|I|
∑
i∈I

min
a∈A

Acca(P(i),Q(i))

Accuracy is easy to interpret but fails to represent the whole plausibility distribution. This means,
a close to uniform distribution with most mass on x is treated equally as a low-entropy distribution
that accumulates all mass on a single x.

Cross Entropy (CE) Since we need to compare probability distributions, we can make use of
divergence measures, which express how similar probability distributions are. While many of
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such measures exist, a natural choice is to use cross entropy that is also used to train the network.
We compute cross entropy for each action by:

CEa(P(i),Q(i)) = −
∑
r∈R

P(i)
a,r logQ(i)

a,r

Then a single score is obtained by averaging individual cross entropies CEay over all actions:

CE =
1

|I|
1

|A|
∑
i∈I

∑
a∈A

CEa(P(i),Q(i))

A small cross entropy indicates high similarity between prediction and ground truth and is there-
fore desirable. In contrast to accuracy, CE is not intuitively interpretable (how good is a CE of say
0.2?) but it captures differences in the non-maximum parts of the distributions. Comparison is
enabled by considering the CE of one setting relative to others.

Correlation (Corr) The annotated data is ordinal, i.e. there exists an order from impossible over
implausible to plausible. By defining a distance between the three ratings we can transform a plau-
sibility distribution to a continuous, scalar value. This is done by a linear projection with a fixed
vector l = [−1, 0.2, 0.8] that expresses the distances between the ordinal values. For correlation, we
do not compute action-wise scores but consider instances and actions jointly. Let the index j iterate
over instances as well as actions (hence the mappings i(j) and a(j)), then scores for an action can
be computed by: r(j) = max(0, 〈l,Pi(j)

a(j)〉) and q(j) = max(0, 〈l,Qi(j)
a(j)〉)

Now that predictions and ground truths are mapped to a sequence of scalars, we can access
the quality of the model’s predictions by employing Pearson’s correlation coefficient. The resulting
score indicates to which degree predicted and ground truth scores are linearly related. We consider
this a good measure as it is normalized between -1 and 1 and the top score of 1 or 100% is only
attained if scores are identical, except for a scaling factor. In practice, if scores are normalized, the
scaling factor becomes irrelevant. The correlation coefficient is defined as follows:

Corr =

∑
j(q

(j) − q̄) ∗ (r(j) − r̄)√∑
j(q

(j) − q̄)2
√∑

i(r
(j) − r̄)2

A problem of the correlation score is that it requires variance to be computable. If all predictions
(or all ground truth scores) are identical, the term (r(j) − r̄) is zero and causes division by zero.
In fact, this case rarely occurs in our experiments, we indicate it by “-”. The correlation coefficient
is both easy to interpret and captures differences across distributions. However, one might argue
that the projection vector is somewhat arbitrary.

4 Experiments

Next we conduct a series of experiments assessing the quality of the trained networks and relating
them to meaningful baselines. First, we show some qualitative results, involving both instance
only and context. Quantitatively, we analyze performance concerning context, architecture and
training settings using the metrics defined above.
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Training settings / Augmentation

mask MR SR PT aug Acc CE Corr

X - - X 2 47.4 0.200 74.2
X 2 - X 2 39.0 0.255 65.0
X 2 X X 2 37.9 0.275 59.8
X - - - 2 29.0 0.295 53.7
- - - X 2 36.9 0.301 42.9

X - - X 0 45.3 0.212 73.4
X - - X 4 43.9 0.213 71.1
X - - X 6 46.3 0.224 71.6

Table 2: Ablation of different training settings (top)
and augmentation strengths (bottom). PT: pre-trained,
SR: same ratings only, MR: minimal number of ratings

Encoders

model Acc CE Corr

SqueezeNet 40.0 0.212 66.8
RN18 40.4 0.193 70.7
RN50 42.1 0.191 71.6
RN101 44.4 0.216 68.5
RN152 44.4 0.219 70.0
Xception 44.9 0.208 70.1
Inc3 40.9 0.244 63.9
Inc4 47.4 0.200 74.2

Table 3: Comparison of different en-
coders.

4.1 Qualitative Evaluation

In Fig. 5 we present a set of images with their associated action plausibilities computed using
the single-image InceptionV4-based model as well as the 2xRN50 model which uses the instance
image in conjunction with full context. Note the variety of sample images, ranging from an outdoor
cherry tree to different cup close-ups having vastly different illuminations.

The presented samples indicate that the trained model generates useful predictions of the plau-
sibilities of the actions on these unseen samples. We observe that the plausibilities are strongly
dependent on the object class. However, this is not true in all cases. For example the plausibility
for drinking is zero for the empty cup while it is the most likely action fpr the filled cup. Addi-
tionally, while the object class often seems to determine the presence of plausible actions, there are
fine-grained differences in the individual plausibilities. These differences represent a crucial aspect
of the visual common sense knowledge about household scenes that has been learned. In a robotic
context, such differences could be used to compare plausibilities of a given action across multiple
objects and then pick the most suitable object.

The qualitative samples that involve context suggest that the context has an inhibitory effect on
action plausibilities. The predicted plausibilities tend to be smaller. Especially in the bottom row
that involves the same object on different backgrounds we observe much higher plausibilities in
case of a uniform white background compared to the real world background.

4.2 Quantitative Evaluation

Based on the previously defined baselines and metrics, we begin our analysis by comparing various
training settings, augmentation strengths, and encoder architectures. In subsequent experiments
we address special questions investigating how many samples are sufficient, the role of context, the
impact of the encoder architecture and several design choices as part of an ablation. Additionally,
human performance using the same metrics is assessed and related to the computational models.

4.2.1 Ablation

Training Setting and Augmentation First we assess the impact of several training parameters,
introduced above, on the performance. The corresponding results are reported in Table 2. MR
refers to the minimal number of ratings required for a sample. While this is per default 1, in case of
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Figure 5: Top two rows: Qualitative samples generated using the InceptionV4-based network.
Bottom row: Samples generated using full context of the 2xRN50 network (the instance image is
indicated in red)
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Table 4: Evaluation per action for selected models (right) as well as comparison to baseline perfor-
mances (left). The mode baseline does not receive the image as an input but has access to the name
of the object shown. “No inp.” refers to a RN50 network where all input information is removed
by multiplying with zero.
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No Inp. ignore 7.0 0.0 - - - - - - - - - - - - - -
Mode ignore 50.7 0.0 0.350 0.000 75.9 0.0 59.9 88.3 16.8 71.6 86.8 65.5 - 96.7 94.9 73.0

Inc4 ignore 45.9 1.6 0.202 0.007 73.6 1.3 53.2 84.8 18.6 70.6 84.3 77.0 7.9 94.4 91.1 62.6
RN50 ignore 43.5 2.6 0.214 0.005 70.6 1.7 50.9 77.8 19.1 68.8 80.1 71.2 9.3 91.0 88.2 62.8
2xRN50 full 44.6 1.5 0.208 0.007 70.4 2.1 52.0 78.7 20.1 68.3 82.4 65.0 - 91.6 88.0 63.1

MR = 2 the dataset size is reduced but samples are more reliable. Same rating (SR) means that sam-
ples are only accepted when the raters agree (which only makes sense for MR > 1). Moreover, we
find that both, pre-training on ImageNet and masking the loss are crucial for performance. In both
cases, performance decreases compared to single rater samples. This suggest that the increased
variance introduced by a large dataset weighs more than the increased reliability of multiple rat-
ings per instance. In augmentation we find a moderate strength of 2 to perform best.

Encoder The comparison of different encoder architectures, presented in Table 3, indicates that
larger models tend to perform better. We attribute this to two reasons: First, they can capture
more complex features. Second, their object detection performance is better. Given reliable object
detection, it is easier to exploit dataset biases. For a more detailed discussion of this we refer to
Sec. 4.2.3.

Besides the shown experiments, we found the batch size to play a critical role for performance
and thus suggest to keep the batch size as large as possible. Additionally, we tried to use larger
images to improve performance without success. We hypothesize that the reason for this is that
models strongly benefit from the pre-trained ImageNet weights. This pre-training was done for
a fixed image size and the ImageNet dataset is fairly consistent with respect to scale. Hence, the
features encoded by the weights are optimized for this specific size. Possibly, our dataset is too
small to cause substantial changes in the features and hence it benefits from objects being provided
at the original scale.

4.2.2 Action-wise Evaluation and Comparison to Baselines

The results shown Table 4 show improvement over the ignore-image baseline. This means the
models indeed use information from the image to improve predictions. In fact, the ignore-image
baseline considers all actions implausible, which is the best guess without knowing the image.
However, the mode baseline outperforms our methods in Acc and Corr while our method achieves
better CE. This means that our method has advantages at predicting fine-grained differences in the
rating distribution, while for coarse accuracy that neglects details in the distribution, the mode
baseline is good enough.
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Table 5: Performance on four selected ob-
jects: bottle, bowl, wok and box. PT means
pre-training.

Selected Objects

model ign. context PT Acc CE Corr

Mode - ignore - 3.0 0.400 62.2
No Inp. X ignore X 0.0 - 43.6

Inc4 - ignore X 12.1 0.352 62.2
RN50 - ignore X 15.2 0.412 57.0
2xRN50 - img+full X 18.2 0.356 57.7

Table 6: Performance on three selected raters
having high agreement.

Selected Raters

model context ign. PT Acc CE Corr

Mode ignore - - 67.1 0.337 83.0
No Inp. ignore X X 1.8 1.931 -

Inc4 ignore - X 55.7 0.147 83.2
RN50 ignore - X 58.7 0.179 73.8
2xRN50 img+full - X 56.3 0.160 77.6

The class-wise scores give more insights. For most action classes, our methods yield a worse
accuracy (Acc) than the mode baseline. However, drink-from is a notable exception as it performs
much better than mode. This suggests that for drink-from, the image content is crucial and must
be considered to make a decision.

Considering the good performance of the mode baseline it should be noted that it benefits from
several factors: First, it knows the object class being depicted, an information that other models
have no access to. Evidence for the importance of this is found in the gap between ImageNet
pre-trained and untrained models in the ablation (Table 2). Second, it knows the modes of the
rating distributions. Since these distribution are far from being uniform, the mode alone often is
a powerful predictor for the most likely rating. This means that the mode baseline has an unfair
advantage over our method: In practice the information about the object class being shown is
obviously not available as it would require a perfect object recognizer. Plugging in a sub-optimal
object recognizer would diminish the performance. Nonetheless, the mode baseline serves as a
useful anchor to relate scores to.

When we consider all ratings in the CE metric, the mode baseline does not perform as good
anymore. To some extent this is not surprising because the mode baseline always generates one-hot
distributions. Still these fine-grained differences in plausibilities are crucial for many applications
in robotics since they enable the comparison and selection across different potential actions.

4.2.3 Selected Objects and Raters

In many cases the rating distribution is highly dependent on the object class, i.e. given the object
class we can make the correct prediction without having looking at the image. While this is just
a natural phenomenon, it interferes with our analysis since we are particularly interested in cases
where the image content matters. Hence, we conduct an analysis with a subset of objects whose
plausibility rating distribution has a higher entropy. Concretely, these object classes are: bottle,
bowl, wok and box. The corresponding results are shown in Table 5. We see that the mode baseline
is strongly outperformed in terms of Acc and slightly outperformed on CE. This indicates that the
good performance of the mode baseline is an artifact of unbalanced rating distributions.

Similar to picking specific object classes, we can also limit the training data to specific raters.
For this we select a subset of 3 raters having an average pairwise agreement of 73.4. When we
use this set for training and test we obtain the scores reported in Table 6. Here we see substantially
better performance in terms of CE. Also, the gap between mode baseline and our methods is larger.
From these results we conclude that consistency of training and test data is a crucial property.
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Figure 6: Performance for different numbers of
training samples.

Table 7: Comparison of different context repre-
sentations. BS means batch size.

model context Acc CE Corr

RN50 ignore 42.8 0.212 68.3
Inc4 ignore 43.2 0.212 70.5

RN50 only 31.3 0.302 48.3
RN50 only-full 35.5 0.252 65.1
2xRN50 full 42.1 0.207 71.1
2xRN50 masked 44.4 0.208 72.3

4.2.4 Rater Reliability

Having only compared scores obtained from different computational methods so far, a natural
question is: How consistent are the ratings provided by humans? For this, we apply the metrics in-
troduced above on pairs of human raters. By averaging all pairwise scores we obtain the following:
Acc of 42.0, CE of 0.347 and a Corr of 44.8. While Acc is comparable to some models, in terms of
CE and Corr the raters perform significantly worse than the computational methods. If we require
a minimal intersection of 100 instances to compensate for statistically unreliable data points, we
obtain slightly better scores.

We also tracked the self-consistency of the raters by presenting selected instances twice within
the collection of all instances. Since the raters were free to select which samples they annotate, not
all of them annotated these instances. However, across those who did, the self-consistency varies
between 0.77 and 1.0 with an average of 0.90. The number of samples that were annotated twice
ranges from 1 to 26 with an average of 13.1.

4.2.5 Scalability

The number of training samples is a quantity that normally has a strong impact on the perfor-
mance. Since we are collecting the data, it is crucial to understand the effect of the training sample
size to avoid an insufficiently small dataset. Fig. 6 provides an overview on the relationship be-
tween training samples and performance. It suggests that the dataset is large enough and no major
improvements could be expected from gathering more data. Surprisingly, we find that already a
fairly small amount of annotated scenes allows models to attain a high correlation with the ground
truth probabilities.

4.2.6 Context

Not only the appearance of an object is relevant for actions, potentially also the context can give
hints about the status of an object. Having introduced context representations in Sec. 3.8, here we
run an explicit comparison of the representations.

From Tab. 7 we observe that context with the instance object being masked (only-masked) helps
to predict actions but does not achieve the performance of showing the object itself (ignore context).
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When the instance image is combined with a context representation, the Corr scores slightly im-
prove compared with RN50 ignoring context. However, this improvement is fairly small. This is
probably due to small parts of the context being included in the image itself. The information that
can be extracted from a bigger context is therefore negligible and does not outweigh the problems
of having more parameters. Relying exclusively on the context does not seem to be a good idea.
This is not surprising because the object appearance clearly gives hints about possible actions.

5 Conclusion

In this paper, we established a framework of how to gather action plausibility ratings, creating
a dataset called ”PlausiblAct”, transform them to train neural networks and evaluate the corre-
sponding results. After defining a set of ten actions and three ratings, we presented our sparse
data collection method relying on web techniques allowing for a fast and comparatively effortless
data annotation. Next these ratings of object instances are transformed into distributions on which
a neural network can be trained to make action-oriented predictions. To assess the quality of the
predictions we proposed three metrics capturing complementary aspects of the predictions. In our
comparison of state-of-the-art feature encoders we find the InceptionV4 network to be suited best
for the task. The experiments suggest that object-classification performance is still a crucial fac-
tor for scoring action plausibilities. Combinations with context seem to improve the performance
slightly, while context alone ignoring the actual objects’ appearances performs quite badly.

We believe such systems are useful in robotics because they allow the comparison and selection
of actions in various settings. An advantage of the proposed method is that it can be combined
with other robotic algorithms. For example, assume a scene involving a dirty and a clean cup and
the instruction “put cup to dishwasher”. Although it is obvious to humans that the instruction is
refers to the dirty cup, this common sense knowledge is not available to the robot. By using our
method, the system can evaluate images of both cups and then pick the one for which the action
“cleanse” is more plausible. Thus, potential applications, where we expect action plausibilities to
be helpful, concern robotic action planning, where our method allows better disentangling action
preconditions needed in the planning operators.

The presented approach has some limitations. So far, the models we employed are simple
image classification models that are not specifically designed for reasoning. Also the inter-rater
reliability is far from being optimal. Hence, future work might involve reasoning-oriented models,
e.g. the relation network [26] and a more constrained annotation setting to obtain more reliable
action ratings. So far, we excluded images depicting humans from the data as far as possible. As
a potential next step, showing humans could increase the complexity of this or similar approaches
as intentions would need to be estimated.
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Toothbrush - - - - - X - X - -
Apple - X - X - X - X - -
Chopsticks - - - - - X X - - -
Croissant - X - X - - - X - -
Cucumber - X - X - X - X - -
Radish - X - X - X - X - -
Hot dog - X - X - - - X - -
Waffle - X - X - - - X - -
Pancake - X - X - - - X - -
Pretzel - X - X - - - X - -
Bagel - X - X - - - X - -
Teapot X - - - - X X - - -
Popcorn - - - X - - - X - -
Burrito - X - X - - - X - -
Scissors - - - - - - X - - -
Chair - - X - - - - - - -
Muffin - X - X - - - X - -
Cookie - X - X - - - X - -
Calculator - - - - - - X - - -
Box - - - - - - X X X X
Stapler - - - - - - X - - -
Studio couch - - X - - - - - - -
Zucchini - X - X - X - X - -
Ladle X - - - - X X - - -
Winter melon - X - X - X - X - -
Spatula - - - - - X X - - -
Pencil sharpener - - - - - - X - - -
Eraser - - - - - - X - - -
Tin can X - - - - - X X X -
Mug X - - - - X X - - -
Can opener - - - - - X X - - -
Coffee cup X - - - - X X - - -
Cutting board - - - - - X X - - -
Vase - - - - - X X - - -
Slow cooker - - - - - X X - X -
Whisk - - - - - X X - - -
Salt and pepper shakers - - - - - X X - - -
French fries - X - X - - - X - -
Tart - X - X - - - X - -
Egg - - - X - - - X - -
Grape - X - X - X - X - -
Mixing bowl X - - - - X X - - -
Hammer - - - - - - X - - -
Sofa bed - - X - - - - - - -
Adhesive tape - - - - - - X - - -
Saucer - - - - X X X - X -
Drinking straw - - - - - X X - - -
Common fig - X - X - X - X - -
Cocktail shaker X - - - - X X - - -
Artichoke - X - X - X - X - -
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Knife - - - - - X X - - -
Bottle X - - - - X X X X -
Bottle opener - - - - - X X - - -
Bowl X - - - X X X - X -
Frying pan - - - - X X X - X -
Ring binder - - - - - - X - - -
Plate - - - - X X X - X -
Pitcher X - - - - X X - - -
Pencil case - - - - - - X - - -
Kitchen knife - - - - - X X - - -
Plastic bag - - - - - - X X X X
Potato - X - X - X - X - -
Pasta - - - X - - - X - -
Pumpkin - X - X - X - X - -
Pear - X - X - X - X - -
Infant bed - - X - - - - - - -
Pizza - X - X - - - X - -
Submarine sandwich - - - X - - - X - -
Loveseat - - X - - - - - - -
Coffee table - - X - - - - - - -
Taco - - - X - - - X - -
Strawberry - X - X - X - X - -
Tomato - X - X - X - X - -
Measuring cup - - - - - X X - - -
Paper cutter - - - - - - X - - -
Wok - - - - X X X - X -
Jug - - - - - X X - - -
Pizza cutter - - - - - X X - - -
Bread - X - X - - - X - -
Platter - - - - - X X - - -
Toilet paper - - - - - - X - - -
Lemon - X - X - X - X - -
Banana - X - X - X - X - -
Wine glass X - - - - X X - - -
Countertop - - X - - - - - - -
Waste container - - - - - - - - - X
Book - - - - - - X - - -
Hamburger - - - X - - - X - -
Asparagus - X - X - X - X - -
Spoon - - - - X X X - X -
Oyster - - - X - - - X - -
Ice cream - - - X - - - X - -
Orange - X - X - X - X - -
Beaker X - - - - - - X - -
Peach - X - X - X - X - -
Fork - - - - X X X - X -
Cabbage - X - X - X - X - -
Carrot - X - X - X - X - -
Mango - X - X - X - X - -
Pineapple - X - X - X - X - -
Stool - - X - - - - - - -
Envelope - - - - - - X X - -
Cake - - - X - - - X - -
Candy - - - X - - - X - -
Salad - X - X - X - X - -
Serving tray - - - - - X X - - -
Kitchen and dining room table - - X - - - - - - -
Cake stand - - - - - X X - - -
Broccoli - X - X - X - X - -
Grapefruit - X - X - X - X - -
Bell pepper - X - X - X - X - -
Pomegranate - X - X - X - X - -
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Doughnut - X - X - - - X - -
Pen - - - - - - X - - -
Watermelon - X - X - X - X - -
Cantaloupe - X - X - X - X - -
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