
Context-based Affordance Segmentation
from 2D Images for Robot Actions

Timo Lüddeckea, Tomas Kulviciusa, Florentin Wörgöttera

a Universität Göttingen
Department for Computational Neuroscience at the Bernstein Center Göttingen

Inst. of Physics 3 and Leibniz Science Campus for Primate Cognition.

Abstract

Affordances play a crucial role in robotics since they allow developing truly autonomous robots, which can freely explore and
interact with the environment. Most of the existing approaches for analyzing affordances in a scene consider only one or few types
of affordance, e.g., grasping points, object manipulation or locomotion. In many cases only whole objects are considered. In our
study we include in total 12 affordances of object-related, manipulation and locomotion affordances, considering affordances of
both objects and/or their parts. We design a system that can densely predict affordances given only a single 2D RGB image. For
this, we propose a method that transfers object class labels to affordances. This enables us to train convolutional neural networks,
a PSPNet-based network and a U-Net-style network, to directly predict affordances from an image using a selective binary cross
entropy loss function. The method is able to handle (potentially multiple) affordances of objects and their parts in a pixel-wise
manner even in the case of incomplete data. We perform qualitative as well as quantitative evaluations with simulated and real data
including robot experiments. In general, we find that frequent affordances are recognized with a substantial fraction of correctly
assigned pixels, while this is harder for infrequent affordances and small objects. In addition, we demonstrate that our method
performs better than a recent competitive approach. As the proposed method operates on 2D images, it is easier to implement than
competing 3D methods and it could therefore more easily provide useful affordance estimates for robotic actions as demonstrated
experimentally.

1. Introduction

To express opportunities for action of an animal in its en-
vironment, the perceptual psychologist J.J.Gibson [1] coined
the term affordances. He defines affordances as opportunities
for action between an animal and the environment.Examples
for affordances from the perspective of a cat are: Shrubbery af-
fords shelter and a mouse affords nutrition. Later, the term was
adopted by the robotics community and extended from animals
to robots. Essentially in robotics this term very often takes the
meaning of: “Which actions could a robot perform in a given
situation (with some given objects)?”. This perspective on af-
fordances is adopted in our work, too. We assume a human-like
embodiement of the robot, leading to a set of affordances simi-
lar to those that humans would encounter. Task-specific refine-
ments of the affordances can be carried out depending on actual
embodiement and application. But even for other systems the
capability to understand affordances can be useful, in particular
if interaction with humans is required such as in a smart home.
In this work, we address the problem of segmenting affordances
for (but not limited to) robotic applications.

Segmentation means that the output of the system we pro-
pose in this paper consists of areas (segments) that represent
different (sometimes overlapping) affordances. This is done in

Email address: timo.lueddecke@phys.uni-goettingen.de (Timo
Lüddecke)

a pixel-wise manner by assigning presence-probabilities for all
different affordances to every pixel in the image. Affordance
segmentation is more challenging compared to object class seg-
mentation due to three aspects. 1) Affordances are not disjoint,
i.e., the presence of an affordance does not exclude the presence
of other affordances. This requires us to make use of multi-class
segmentation. 2) Affordances can refer to very small structures,
which are only parts of objects. 3) There are no large-scale
datasets available yet. This means that the problem cannot sim-
ply be addressed by training a semantic segmentation model on
new data. These challenges in conjunction with the practical
applicability makes affordance segmentation an interesting and
challenging research topic.

There are multiple approaches to identify affordances, each
having their own pros and cons. For example, affordance as-
signment can be done by considering object geometry [2]. If
performed purely in this way, this leaves out all semantic ob-
ject knowledge which we–humans–have access to when assign-
ing affordances. Therefore, in this work we pursue a semantic,
context dependent approach and show that this is very power-
ful even when only considering single 2D-RGB images. This
method leverages knowledge about the relation between affor-
dances and object parts and employs a convolutional neural net-
work (CNN) to assign action affordances probabilistically to the
pixels of a new image. The advantage of this is that it combines
a knowledge-based approach with 2D images making it useful

Preprint submitted to Robotics and Autonomous Systems May 20, 2019

for a wide range of robotic applications. Naturally, limitations
of all single image-based approaches apply to this work as well,
e.g., in the case of 3D to 2D projection inconsistencies. How-
ever, such problems can often be solved by incorporating other
methods, e.g., fusing the segmentation with a structured light
sensor output and doing some post-processing.

In summary, the contributions of this work are as follows:

• A method to generate a large set of action affordances
from semantic segmentations using a selective binary cross
entropy loss function.

• A method to fuse simulated data with real data to improve
generalization and their empiric comparison.

• An extensive evaluation of UNet- [3] and PSPNet-like [4]
convolutional neural networks for affordance segmenta-
tion taking both runtime speed and prediction quality into
consideration.

• Validation of the method in a robotic scenario that con-
sists of images that had not been part of the training set.

For reproducibility of our proposed approach and as a starting
point for using our method in practice we published the source
code and pre-trained models online. 1

2. Related Work

In the past affordances have been addressed in multiple stud-
ies, both in computer vision and in robotics. In the follow-
ing, we will review existing work from psychology before dis-
cussing different approaches for affordance segmentation and
relate those to our approach.

2.1. Affordances in Psychology

The term affordance originates from the field of perceptual
psychology. It was originally coined by J.J. Gibson as part of
his direct perception theory. He defined affordances as poten-
tial actions between an animal and its environment, given the
capabilities and state of the animal and the structure of the en-
vironment [1]. The set of all affordances of an animal is called
its ecological niche. Based on the seminal work of Gibson [1],
later research sought to refine the question of what constitutes
an affordance also addressing philosophical implications. Early
theories considered affordances to be properties of the environ-
ment which are used by an animal [5]. Chemero [6] argues
against this and proposes to consider affordances not as proper-
ties at all but as relations between particular aspects of animals
and situations. Recently, Rietveld and Kiverstein [7] suggested
applying the notion of affordances in a much broader context
and on a higher level: They argue that any skill, not only mo-
toric abilities, that a form of life possesses establishes a set of
affordances. They use form of life instead of animal to empha-
size cultural differences within a species of animals. A review

1https://gitlab.gwdg.de/cns-group-public/aff-seg

on the historical development of the term affordance and a dis-
cussion of competing models was carried out by [8] and more
recently by [9].

In addition to these theoretical and philosophical aspects,
several studies have assessed the perception of affordances in
humans and animals experimentally. Warren [10] suggests dif-
ferentiating the transition between affordances on the basis of
critical and optimal points and finds experimental evidence that
the perception is affected by the capabilities of the agents. A
mathematical formulation of affordances is obtained by express-
ing critical points as functions of ratios of body parts (leg length)
and environmental quantities (riser height). Cole et al. [11]
studied differences in perception of the three types of affor-
dances leap, arm-swing and crawl in humans. They found par-
ticipants to systematically underestimate their abilities in launch-
ing actions (leap and arm-swing) but improved their judgement
after actually performing the actions.

2.1.1. Relation of our work to affordances in psychology
Our approach can be seen as a partial implementation of the

direct perception paradigm by Gibson. Light represented by an
RGB image is directly transformed into actions without explicit
intermediate representations (the activations in the layers form
implicit representations, though) in a pure feed-forward fash-
ion. Instead of binary categories, affordances are represented
probabilistically as suggested in [12]. One of the affordances
analyzed by our system is illumination, which does not imply
an immediate motor action. This can be seen as an example of
the richer set of affordances enabled by animal skills as sug-
gested by [7]. Wagman et al. [13] studied a multi-affordance
environment and found evidence that humans sense means-end
relations between affordances. Our work shares the trait of pre-
dicting multiple affordances simultaneously but does not en-
compass hierarchies.

2.2. Affordances in Computer Vision

A common approach for affordance segmentation is to pre-
dict affordances of whole objects [14, 15]. Akin to these is the
work of Ye et al. [16] who detect bounding boxes of affordances
using a two-stage approach consisting of region proposal and
CNN-feature-based affordance recognition. Sawatzky et al. [17]
learn to segment affordances on weakly supervised data. More
recently, Sawatzky et al. [18] address a few-example-setting us-
ing label transfer on images of objects. Given a query image,
a similar example is retrieved from a database. Then the seg-
mentation is transferred to the query and refined by a CNN.
It seems unlikely that this approach generalizes beyond object
level as whole scenes vary much stronger and finding a similar
example scene would require an extremely large database.

Affordance datasets have been proposed before. The UMD
RGB-D part affordance dataset [19] focuses on objects only,
was captured in a controlled lab environment and is intended for
approaches that rely less on context but on depth information.
The IIT-AFF dataset [20] might seem more applicable for us.
However, it involves only 10 object classes which is too limited
for studying whole scene affordances. Furthermore, it is sparse

2

Table 1: Comparison of related algorithms with # denoting the number
of used affordances.

Approach # input output

Grabner et al. [2] 1 RGB-D per voxel
Gupta et al. [21] 4 RGB per pixel
Savva et al. [25] 7 Video per voxel
Rhinehart and Kitani [26] 6 Video per grid-cell
Roy and Todorovic [27] 5 RGB per pixel
Our approach 12 RGB per pixel

as affordances are only assigned to objects but not other parts
of the environment (e.g. the floor). Due to these shortcomings
we decided to construct our own dataset that is more suitable
for our analysis.

Affordances can also be predicted in form of (human) poses.
This scheme is adopted by Gupta et al. [21] making use of scene
geometry and in Grabner et al. [2] specifically for chairs and
by Fouhey et al. [22] using video. Similarly, Kjellström et al.
[23] learn affordances by observing interactions with objects in
videos. More recently, Wang et al. [24] analyze popular sitcoms
to learn pose-based affordance prediction.

The idea of “action maps” is closely related to affordance
segmentation. However, the former tends to be more specific,
e.g., by referring to very concrete objects and the set of consid-
ered actions is fairly small. Examples of these approaches are
Savva et al. [25] who generate seven different “action maps” by
tracking people in RGB-D video footage and Rhinehart and Ki-
tani [26] who learn 6 action maps through analyzing egocentric
video recordings.

The method proposed by Roy and Todorovic [27] is similar
to ours as it also generates pixel-wise maps given an RGB im-
age. Their model learns intermediate representations for depth,
surface normals and object classes, which are then employed
to carry out the affordance map prediction. The learning of
these representations is actively enforced during training, i.e.,
the method requires additional data during training, while our
method only needs RGB images and affordance map ground
truth. Another difference to our work is the set of considered
affordances.

Concurrently to this work, a similar method is proposed by
Do et al. [28]. It deviates from our method as it conducts affor-
dance and object detection jointly and is trained on the sparse
IIT-Aff dataset, while we are interested in entire scenes ”in the
wild”.

A common trait of many approaches is that they are con-
strained to a specific domain or the set of considered affor-
dances is small (see Table 1). Our dataset consists of 22,000
images, which is significantly more than IIT-AFF (8,835 im-
ages) and UMD RGB-D (more than 10,000 annotated images
but only 105 object instances). As stated in the introduction,
our approach is context-based and we do not explicitly consider
object geometry (for such approaches see [2] or [27]).

2.3. Affordances in Robotics
Affordances play a major role in cognitive and develop-

mental robotics since they are crucial for a robot allowing it to
explore and interact with the environment fully autonomously.
Affordance research in robotics has received a lot of attention
during the last decade and led to many contributions. For de-
tailed recent surveys see Min et al. [29] and Zech et al. [30]. In
the following, we will only briefly review main concepts and
approaches in affordance-related research in robotics and relate
them to our approach. Also, we will be only concerned with
object/tool related affordances and will not talk about social af-
fordances (e.g., [31]).

There are mainly three categories of object-related affor-
dances [30, 29]: 1) grasping affordances, 2) manipulation affor-
dances, and 3) traversability and locomotion affordances. Grasp-
ing affordances are mainly concerned with how to find a grasp-
able point of the object for a particular object manipulation
[32, 33, 34, 35]. Manipulation affordances relate to manipula-
tions of single objects, e.g., push, pull, turn, lift, etc. [36, 37, 38,
39, 40] or to the interaction with multiple objects and/or tools,
e.g., stack, sort, tool use, etc. [41, 42, 43, 44]. Traversabil-
ity and locomotion affordances relate to motion affordances for
mobile robots, e.g., cross, climb, select foot placement, etc.
[45, 46, 47, 48]. While most of the studies focus on one type
of affordance or consider only few affordances (mostly in the
range of two to four [30]), in our study we deal with a to-
tal of 12 affordances within three categories of affordances:
manipulation-related affordances (break, grasp, pull, tip-push,
place-on), traversability- and locomotion-related affordances (sit,
roll, walk, obstruct, support) and two object-related affordances,
which do not belong to the three main types of affordances
stated above (illuminate and observe). Also, most of the studies
assign affordances to a whole object [29] and only few studies
consider parts of objects [41, 42, 43], whereas in our study we
investigate affordances of both objects and their parts.

Affordances can be acquired or learned in several ways [30].
The most common strategy to learn affordances is exploration,
which is inspired by the cognitive development of children [49,
50, 51, 52]. Other strategies include supervised learning ap-
proaches such as programming by demonstration [14, 53, 54] or
by providing ground truth data to an agent [55, 56, 57]. Some
other approaches do not use learning at all and use hard-coded
affordances [58, 59, 60]. In our study we use a supervised learn-
ing approach, which is much easier to implement and is less
time-consuming as compared to exploration.

Different learning strategies have been used to implement
affordance learning ranging from unsupervised learning meth-
ods such as self organizing maps [61] and K-Means clustering
[62, 63], and reinforcement learning techniques [41, 64, 65, 66]
to supervised learning techniques such as support vector ma-
chines and multi layer perceptrons [67, 55, 68, 69] and recent
approaches using CNNs [27, 57, 70, 20]. In our study we also
employ CNNs, however, as already discussed above, we only
rely on single 2D images. In [27, 70, 20] RGB-D images are
used while in [57], in addition to RGB images, motion data
were employed being specific to autonomous-driving applica-
tions.

3

2.4. Simulated Training Data

Previous works have studied the effect of training on simu-
lated data. For the related tasks of stereo matching and optical
flow, Mayer et al. [71] discuss several data generation schemes.
However, these tasks are quite different from affordance seg-
mentation as they require alignment of image regions instead of
semantic understanding. Saleh et al. [72] address semantic seg-
mentation, but they only consider a scenario where all training
data is synthesized while we explicitly focus on how to merge
simulated and real data.

3. Methods

In this section we describe the sub-modules of our method.
The general pipeline of our approach is outlined in Figure 1.
First, we explain how we transfer object (part) labels to affor-
dance labels. Then the model for generating simulated train-
ing data is defined. In section 3.3 we provide an overview of
the CNN architectures and the loss function we employ in this
work. Finally it is explained how the system can be used in a
robotic framework.

3.1. Part Labels for Affordance Definition

We use real as well as simulated data for training (and test-
ing) our system. In the following, we will describe how to as-
sign affordances to real scenes, which is the more complicated
case. Generation of simulated scenes is described afterwards,
where the same principles for affordance assignment are em-
ployed.

Our method requires access to object and part segmenta-
tions, with as fine-grained labels as possible. From these anno-
tations we derive affordances using a transfer table while obey-
ing these principles:

1. Affordances should be meaningful (in some sense) for
robots or humans.

2. We require that affordance names are specific. For exam-
ple, open is a very unspecific multi-action. Tip-push im-
plies a very well defined motion, of approaching a surface
(e.g. a button) with a finger (mostly the index finger).
Therefore we consider tip-push to be specific enough.

3. Actions can have a hierarchy, but lead to the same final
outcome: E.g. a house can be entered, a door, which is a
part of the house, can be opened and the door’s handle, as
a part of the door can be pulled. All of this will be done
to enter the house, where the pulling of the door handle is
here the action at the lowest semantic hierarchical level.
Only this level will be considered to label affordances in
this study.

Considering these guiding principles as well as the underly-
ing dataset (ADE20K), we define a set of 12 affordances: ob-
struct, break, sit, grasp, pull, tip-push, illumination, observe,
support, place-on, roll and walk. They are presented along with
short descriptions in Table 2.

Table 2: Description of the set of affordances used.

Affordance Description
obstruct vertical surface that prevents locomotion. e.g. wall
break detachable objects that can easily be damaged or destroyed

e.g. vase
sit surface a human can sit on while having the feet on the

ground e.g. seat cushion
grasp detachable objects that can be encompassed with one hand

or only few fingers and be moved with one arm.e.g. vase)
pull surfaces that can be pulled through a hook or pinch move-

ment of the fingers (all directions). e.g. knob, handle
tip-push surfaces that trigger some action when being pushed. e.g.

button-panel
illumination surfaces that emit visible light.e.g. bulb
observe surfaces that present information or art, i.e. that can be

read or watched. e.g. display
support stable surfaces that provide support for standing (for the

agent) except ground. e.g. wall
place-on raised surfaces where objects can be placed on (this ex-

cludes the ground). e.g. tabletop
roll surfaces that can be used with wheels. e.g. road
walk surfaces a human can walk on. e.g. grass

3.1.1. Object Parts
An affordance most often refers to only a part of an object.

For example, it is the surface of the table that affords placing an
object there, but not the table legs. Thus, we define affordances
part-wise. ADE20K [73] is currently the only sufficiently large
dataset that resolves objects into their parts, hence it is used in
this work. Although MsCOCO [74] has many more images,
this dataset is not suitable for our approach as it only provides
80 object classes.

3.1.2. Transfer Table
We manually define a mapping from object and object-part

labels to 12-dimensional affordance vectors. Each dimension in
this vector corresponds to one affordance. Each vector element
can have a value between 0 and 1 or can be undefined. The lat-
ter is useful if the presence of an affordance cannot be reliably
inferred from the object or part name. Clearly, multiple affor-
dances can be present simultaneously, so, in contrast to seman-
tic segmentation, the vector does not have to sum to one. This
mapping from objects and parts to affordance we call the trans-
fer table. It consists of round 250 rows that have been manually
defined by us. This table serves as the basis for turning segmen-
tation ground truth data from ADE20K into affordance ground
truth data (which will be later fed to the CNN). Adding a new
affordance would require updating the transfer table with an ad-
ditional column. For this, compatibility (yes or no) between the
new affordance and all approximately 250 object needs to be
defined.

The transformation from an object-part segmentation O into
an affordance segmentation A is carried out pixel-wise. The
original label of a pixel is searched in the transfer table T and
replaced with the associated affordance vector from the table, if
there is a matching entry in the table, i.e. Aij = T (Oij). Oth-
erwise we acknowledge that no affordance can be assigned. To

4

Object Segments

Object Part Segments

Image

...

...

Part
Affordance
Table

X{
Coverage

Dense Refine
ResNet

Test Sample

place-on

Object/Part Segmenta�on

walkhook-pull

...

Affordance Maps

Y{

Merge /
Select

Simulated Training Data

Affordance Maps

Y{X {

Real Training Data

Robot execu�on

Figure 1: Our approach: We train a neural network to predict a set of affordance maps (Y) from a single RGB image (X) using a loss function
that allows for incomplete data by incorporating a coverage map. Real (red) and simulated training data is mixed (green), with the real data being
generated from object part segmentations using a manually specified part-affordance table. The output of the algorithm can serve as an input to
many robotic tasks.

top window seat base floor

Figure 2: Example usage of the transfer table: Given a set of object-
part segmentations (e.g. from ADE20K), the transfer table is queried
to generate 12 affordance maps of which three are shown (sit (blue),
place (green) and illumination (red)). In general, affordances can over-
lap, although this is not the case here.

make the latter accessible later on we store a binary mask tensor
M, that encodes the validity of the assigned affordances:

Mi j =

1 if Oi j ∈ T ∧ T (Oi j) , undef.
0 otherwise

This mask is subsequently leveraged in the cost function to se-
lect valid pixels (see section 3.4). A sketch of how the transfer
table works is shown in Figure 2.

Table 3 below shows an excerpt from the transfer table.
Each cell can have three values: Affordance present (1), ab-
sent (0) or ”unknown” (). A door and a swivel chair are always
obstruct-able. However, only some parts of the swivel chair
are sit-able and grasp-able so the corresponding fields are left
blank, indicating uncertainty. The same holds for door with
break, illumination and support, because it might be a glass
door.

object ob
st

ru
ct

pi
nc

h-
pu

ll
br

ea
k

si
t

gr
as

p
ill

um
in

at
io

n
su

pp
or

t
pl

ac
e-

on

...

swivel chair 1 0 0 0 0 0 ...
door 1 0 0 0 0 ...

...

Table 3: Excerpt from the transfer table

By applying the transfer table to the original segmentation
labels of ADE20K we obtain our affordance maps. The distri-
bution of the different classes is depicted in Figure 3.

3.1.3. Data Augmentation
Scene quality in ADE20K substantially varies. This leads

to the situation that only a rather small number of good-quality
training samples can directly be generated from ADE20K. There-
fore, we augment the dataset by cropping out image patches
from an original image where we then vary color and contrast
within such a patch. For large images, this can lead to multi-
ple non-overlapping crops, which can be considered individual
samples. The augmentation is carried out online, i.e. therefore
in each training epoch completely new samples (new crop, new
color, new contrast) are fed into the network.

3.2. Simulation Model

Transferring labels from real-image object parts has some
disadvantages: Maps are incomplete and some affordances oc-
cur rarely. We overcome this problem by generating a new
dataset of simulated images. It relies on a probabilistic scene
model of a living room and a kitchen with several constituents
of the scene being randomized. Hence, we can generate strongly
varying images of the scene. More precisely, the randomized
variables in our model are object material, -position, -shape,
scene illumination, and perspective.

5

train val test

obstruct
break
sit
grasp
pull
tip_push
illumination
read/watch
support
place_on
roll
walk

Figure 3: Occurrence distribution of the 12 affordances on the differ-
ent splits. The classes are highly imbalanced, which poses a challenge
for training the network. Some classes are so rare they cannot be seen
in the diagram.

Object material. Objects can have different materials. A table
surface, for instance, can be composed of plastic, wood or glass.
Glass can be transparent or opaque. During scene generation,
every object in the scene gets a randomly assigned material,
with possibilities being constrained based on the object name.

Object positions. Several objects are randomly positioned in
the scene and relative to other objects. Examples are a plate on
a table, which is dependent on the table’s height and a fork and
knife, which are positioned relative to the plate.

Object shape. For some objects we define key model shapes
and interpolate between these key shapes when a scene is gen-
erated. E.g. we interpolate between a chair with rounded edges
and a chair with sharp edges.

Scene illumination. The world during day-time looks entirely
different than at night. We account for this by varying light
from the outside as well the intensity of indoor and outdoor
illumination.

Perspective. Having obtained a variable scene model, we still
need to simulate the process of photography by projecting the
3D scene onto a 2D plane from many possible viewpoints. For
this, it is desirable to use viewpoints that sample mostly inter-
esting aspects of the scene (e.g. multiple objects and sufficient
distance), while avoiding irrelevant projections (e.g. view of
the ground only) or invalid perspectives (e.g. taking an image
from behind a wall). We address this challenge by sampling the
camera’s position randomly along a fixed heuristically assumed
trajectory and introducing slight variances with respect to the
position.

For each object or object part we manually define corre-
sponding affordances and render the corresponding affordance
maps in a second pass by changing the objects’ materials.

This procedure allows us to generate an arbitrary number of
training samples each providing consistent, fully covered affor-
dance maps. This way, we can extend the training set by many
additional images.

Figure 4: Three simulated samples where the perspective is fixed
while other variables (e.g. floor) were randomly sampled.

The simulation model is implemented in the open source 3D
modeling and simulation software blender2 using its scripting
API and the unbiased, physics-based renderer cycles. Figure 4
gives an impression of the variability of the simulated samples.
The dataset obtained using this method involving 2280 scenes
is subsequently denoted by SimT . While we can draw an infi-
nite number of samples from the simulation, the critical task is
to introduce variability. Hence, the number of artificially gen-
erated scenes represents a trade-off between performance gain
and effort we put into designing the simulation environment.

3.3. CNN

Affordances are context dependent. An example makes this
clear. We could ask whether a surface is walk-able or suitable
to place things? If we now compare the ground with a table
surface, we find that, locally, both are flat and uniform. Only
context may resolve the difference between them. Walk-able
surfaces, for example, may be accompanied by cars and trees,
a table surface, on which we would put things — on the other
hand — is often flanked by e.g. chairs. This leads to the require-
ment that the receptive field of a pixel should, ideally, cover the
whole image because even distant pixels might be decisive for
a local affordance.

This could well be in conflict with the second essential re-
quirement, which demands that image details must not get lost
during the forward pass of the network. Hence, object- and
part-boundaries should be preserved. For example, many affor-
dances concern rather smaller image aspects (e.g. a knob for
pulling) and these aspects should not be lost by the network’s
operation.

With these requirements in mind, we propose and compare
multiple neural network architectures. As it might be advisable
to choose the architecture depending on the application we con-
duct an experiment to guide this decision in section 5.4. Our
choice of models can be divided into two branches: PSPNet-
based [4] and U-Net-based [3].

Both are deep convolutional neural networks that predict
densely, i.e. per pixel. The former relies on the work of Zhao
et al. [4], which proposed the pyramid pooling module (PPM).
Evolving from the fully-convolutional network (FCN) [75], this
model extracts features using a conventional encoder, applies

2https://blender.org

6

1000 1/8

1x1

2x2

3x3

6x6

1000

1000

1000

1000
1/8

3048

512

512

512

512

+

12
1/1

Dilated
ResNet

Pooling Conv 1,1 Scale
Concat

Conv 1,1
Upsample

+

Output

Figure 5: Architecture of the PPM module in the PSPNet model.

the PPM on the obtained feature maps and upscales to the out-
put tensor. In our case, feature maps are extracted using a 102-
layer dilated ResNet encoder3, hence the model will be called
P-102. Our implementation of PSPNet focuses on the architec-
ture and avoids training tricks like an auxiliary loss (see Fig-
ure 5). The PPM ensures that contextual cues can be processed,
which we believe to be an important trait. Due to the small spa-
tial resolution output of the PPM, predictions tend to be blurry,
if no further processing (such as an conditional random field
[76]) is applied. Also, the PSPNet-based model is fairly com-
plex, requires a lot of memory for training, resulting at smaller
batch sizes, and is slow at inference.

Therefore we designed an alternative network following the
U-Net [3] paradigm, which has the advantage of being faster
to train and to run, compared to [4]. This model is depicted in
Figure 6. The encoder is based on ResNet [77] and the archi-
tecture adopts the idea of refinement modules [78]. It had been
shown by these authors that ResNet50 together with refinement
modules successfully generates sharp object proposals, because
refinement modules offer an elegant way for merging local with
scene-level information. Thus, here we use a modified version
of the architecture from [78].

This model integrates abstract information from deep lay-
ers with the spatially more accurate representations still present
in less deep layers. Here both input layers will deliver maps
of the same image size where they are then first stacked on top
of each other (concatenated along depth) and subsequently con-
volved with the learned filters to obtain feature maps. While the
base model is fixed to be a ResNet, we experiment with several
configurations: The encoder size is varied from 18 to 152 lay-
ers, which heavily influences the execution (and training) speed
of the model. In the decoder, we only vary the number feature
maps in the last two refinement modules: In addition to the nor-
mal setting with 32 feature maps each we introduce a ”small”
setting involving 16 feature maps each (see DS in Table 4). We
initialize the ResNet encoder with features obtained from Ima-
geNet [79] pre-training, but do not freeze any weights.

3.4. Cost function
We propose a novel cost function we call selective binary

cross entropy. This cost function deals with two aspects: 1) af-
fordances are often not unique and for a given pixel multiple
affordances may exist simultaneously. Hence, we imply a bi-
nary (present vs not present) probability distribution for each

3We use this implementation https://github.com/fyu/drn

Conv /Pool

block1

block2

block3

block4

Refine

Refine

Refine

Refine

Refine

64

1/4

1/8

1/16

1/32

256

512

1024

2048

1/4

256

128

64

32

Conv

32

123

1/16

1/8

1/4

1/4

1/1

1/11/1

Re
sN

et

Input Output

Figure 6: Architecture of the U-Net-based model. The ResNet en-
coder on the left involves four blocks. The boxes indicate the corre-
sponding intermediate tensor sizes (number of channels and fraction
of the image size).

pixel and each affordance. 2) For some parts of the image no
affordances may be defined. For those, we cannot tell whether
an affordance is present or not, because the corresponding ob-
ject or part is not found in the transfer table. However, since
we also generate the corresponding validity mask, we know the
location of the invalid regions. The idea is to incorporate also
this information into the cost function.

This means during optimization we search for a model that
agrees with the ground truth, but only where the latter is de-
fined. For some regions no ground truth is defined. Here the
model is free to predict whatever it considers to fit best and is
not falsely punished due to over-generalizing annotations.

This concerns objects and object parts where no decision
about the presence of an affordance can be made based on the
object or part name alone. For example consider a bench. Does
it afford placing-on? This depends on whether the bench’s sit-
ting surface is even. Does a coffee table afford support? Larger
tables might but smaller ones do not. In these cases, we prefer

7

to ignore those uncertain fractions of the data in order to avoid
false annotations. This is implemented by masking in the loss
function.

Both aspects from above lead to the fact that commonly-
used cost functions for semantic segmentation cannot be em-
ployed here. Subsequently, we will formally derive the here
used selective binary cross entropy cost function.

We annotate the ground truth matrix of an image for affor-
dance a ∈ A and pixel i ∈ I with Yai and the associated model
prediction is given by Ŷai. Then the binary cross entropy BCE
is defined by: BCE(p, q) = −p log (q) − (1−p) log (1−q). This
is summed up to render a scalar loss (cost), which captures the
average binary entropy over all affordances and the image.

L(Y, Ŷ) = (|A||I|)−1
∑
a∈A

∑
i∈I

BCE(Yai, Ŷai)

So far this definition is compatible with non-exclusive classes,
but it does not yet account for incomplete data. To achieve
this, we mask the cross entropy matrix, excluding all regions
where no (or indecisive) affordances are present, before averag-
ing. Masking is a very efficient and simple way for removing
the incompleteness ambiguities and we get the following loss:

Lm(Y, Ŷ) = (|A|
∑
i∈I

Mai)−1
∑
a∈A

∑
i∈I

MaiBCE(Yai, Ŷai)

with Mai ∈ {0, 1} indicating if pixel i is valid, i.e. if a corre-
sponding entry is found in the transfer table.

Contrary to [80], the mask M (of each image) is defined for
every pixel and affordance. This allows us to specify uncertain-
ties in the mapping from object/part names to affordances in a
more fine-grained way during the learning phase. In test mode,
the mask is no longer required.

In Figure 7 we highlight how the mask loss leads to a differ-
ent gradient. It can be seen that the gradient is zero where the
mask is zero. Hence, relevant weights are changed with higher
magnitude while irrelevant weights are ignored.

4. Experimental Setup

4.1. Evaluation Datasets

The training and validation samples of ADET are generated
from the ADE20K training dataset 4. The ADE20K validation
dataset is used for testing. It contains 2000 scenes and will
be called ADEE . From this we manually pick 50 high qual-
ity (sharp, multi-object) images and transfer the annotations to
affordances using the table. Then we let a person (expert) man-
ually correct this according to the definitions provided by Ta-
ble 2 by editing each affordance map individually with an im-
age editor. Due to this manual correction, systematic errors of
the part-to-affordance conversion procedure are punished dur-
ing evaluation and we obtain a more realistic estimate of the

4Here you can use the interactive dataset browser to get an impression of
how the samples look like:
http://groups.csail.mit.edu/vision/datasets/ADE20K/dataset browser/

prediction ground truth mask BCE

Gradients
BCE loss masked BCE loss

Figure 7: Illustration of how masking changes the gradient. The top
row depicts network prediction, ground truth, a toy mask and the bi-
nary cross entropy computed from prediction and ground truth. In the
bottom row the gradients resulting from conventional BCE and masked
BCE loss are shown (green indicates negative values). Gradients are
used to change the preceding layer’s weights. We can see that masking
leads to stronger changes in relevant regions while irrelevant weights
are ignored (ie. not changed).

error. Hence, this metric assesses a stronger form of general-
ization. This dataset will be called “Expert50” subsequently.
While a number of 50 samples might seem small, note that the
networks outputs probabilities for every pixel and affordance
resulting in a few million predictions even in the expert dataset.
Hence we consider this dataset reliable enough to be used for
evaluation. Scores are determined by comparing predictions
of our network on the test set with corresponding ground truth
data according to the metrics that will be discussed next.

4.2. Metrics

To quantify the performance, we use the intersection over
union (IoU) metric (sometimes referred to as Jaccard Index),
which is defined as follows:

mean IoU(Y, Ŷ) =
1
|A|

∑
a∈A

∑
i∈I 1[Yai = 1 ∧ Ŷai = 1]∑
i∈I 1[Yai = 1 ∨ Ŷai = 1]

,

following the notation introduced in section 3.4 with Y denot-
ing ground truth and Ŷ a model’s prediction. 1[·] is the indica-
tor function defined as:

1[c] =

1 if c
0 else

Maximal IoU would be 1.0. It is important to note that IoU
is measuring the overlap with the ground truth image segment
area and punishes both, lack of overlap in the labeling as well
as false positive outside-of-segment labeling. To compute this,
the probabilistic predictions of the network must be binarized.
In our experiments we use two fixed threshold values: 0.1 and
0.5 for this.

Additionally, we report the mean average precision. This
metric has the advantage of not relying on a single threshold

8

level but averages over multiple levels. It is based on the preci-
sion P defined as follows

P(Ya, Ŷa) =

∑
i∈I 1[Yai = 1 ∧ Ŷai = 1]∑

i∈I 1[Ŷai = 1]
,

which is evaluated at several recall levels to obtain an average
precision. This is equivalent to the area below the precision-
recall curve. The mean average precision is obtained by com-
puting an average score over all (affordance) classes.

4.3. Implementation Details

The models are trained on a single Geforce 1080 Ti GPU
or Titan V with a pytorch backend [81]. Weights are updated
using RMSprop [82] with mini batch sizes of 16 (or 8 for large
models) and a learning rate of 0.0001. The training is stopped
after 25 epochs.

4.4. Configuration

We assess various components of our model with respect to
their impact on the performance.

Encoder Since a large fraction of the computational budget
is dedicated to extracting features using the encoder, it seems
justified to investigate different choices in more detail. For our
U-Net based model, we constrain the analysis to three common
ResNets [77] having 18, 50 and 152 layers, since they provide
a trade-off between accuracy and speed, which is suitable for
our task. While a larger encoder tends to exhibit a better per-
formance it might also be more sensitive to overfitting due to
its larger number of parameters. Depending on the number of
layers these models will be referred to as R-18, R-50 and R-
152. The PSPNet is only evaluated in one configuration with
a 105-layer encoder involving dilated convolutions, it is called
P-105.

Decoder size Analogously to the encoder, also the decoder
can be configured in different ways. While we keep the number
of 5 skip connections constant, we vary the number of feature
maps each decoder uses.

Masked Loss Above we described how to take care of un-
defined values in our loss function. In our experiments we em-
pirically evaluate whether these changes actually lead to an in-
crease in performance.

Pre-training: Knowledge acquired for recognizing images
can be leveraged in affordance segmentation. Does the model
benefit from pre-trained features or is the architecture (ResNet)
good enough as a prior?

5. Results

5.1. Ablation and Additions

First we conduct an ablation study to identify the best per-
forming configurations and validate the impact of various mod-
ifications (see Table 4). The encoder is fixed to be R-50, i.e. a
ResNet with 50 layers.

In Table 4 we present our analysis on various modifications
regarding sampling, loss and architecture on the base model

Table 4: Ablation study. This experiment has been conducted ex-
clusively on R-50 and ADET as training dataset. DS: decoder size,
IMP: importance sampling, SEL: scene selection, PRE: ImageNet pre-
training, M: masked loss, CM: class mean, CW: class weighting. For
IoU, 0.1 and 0.5 are binarization thresholds. The expert columns refer
to manually corrected samples as explained in Section 4.1.

ADEE Expert50
IoU IoU

DS IMP SEL PRE M CM CW @0.1 @0.5 mAP @0.1 @0.5 mAP

X X 41.5 45.6 61.8 36.5 37.2 53.4
X X X X 35.6 38.8 51.5 35.2 35.1 51.1
X X X 41.8 44.9 54.0 34.5 34.2 52.9

X 42.4 42.3 58.7 33.4 32.9 48.9
X 34.7 36.3 51.4 33.0 28.7 50.9

X X X 35.3 39.1 54.5 31.1 30.0 48.9
X X X 37.7 39.6 53.8 31.0 29.4 48.0

s X 43.0 41.1 58.4 33.4 31.0 48.4
s X X 41.1 44.7 50.5 35.3 34.7 51.3

R-50. Abbreviations in the text refer to the respective table
columns. The columns of this table indicate different config-
urations of the respective model as discussed in Section 4.4 and
the associated scores on: ADEEand the expert dataset.

First, we empirically verify the utility of masked loss. With
mask, scores tend to be higher by around 2 to 4 percentage
points. Further additions address the problem of infrequent
classes, i.e. those affordances that are rare and cover small
areas. One natural way to tackle the unequal distribution of
classes in the dataset is giving less frequent classes more weight.
We experiment with two mechanism to achieve this. Class-
specific weights (CW) in the loss and Class-Mean loss (CM).
In the former case we multiply with manually specified, class-
specific factors in the loss tensor before summing it up to a
scalar. The factors roughly express how rare a class is and the
idea is to compensate for rare classes. In the latter case, instead
of computing the loss individually for every pixel, we compute
a mean over class-specific losses, resulting in each class being
weighted equally. Since both metrics also average over class-
specific scores we would expect them to increase, as rare classes
should perform better. However, this is not the case. We even
observe a substantial drop in performance if CM or CW is en-
abled. An alternative to manipulating the loss function is to
change the data that is fed to the network during training. In-
stead of showing a uniformly sampled cropped image exactly
once per epoch, we changed the sampling to include on rare
classes in the crop with higher probability (IMP) and even ex-
cluded images that do not contain specific classes (SEL). Also,
these modification did not lead to a better performance but are
kept in the paper for completeness. We conclude that data quan-
tity outweighs data quality at least for this task.

During experimentation we found the choice of the opti-
mizer and its learning rate to be crucial for the performance
of rare classes. High learning rates drive the optimizer into a
minimum where rare classes are never predicted. Hence, in
the presence of highly imbalanced classes it seems advisable to
use dynamic learning rates as conducted by RMSprop and other
more sophisticated gradient descent algorithms.

9

Table 5: Comparison of combined training strategies. The ’+’ denotes
joint training while → indicates multiple subsequent training proce-
dures. The expert columns refer to manually corrected samples as
explained in Section 4.1

ADEE Expert50

IoU IoU

model train data M @0.1 @0.5 mAP @0.1 @0.5 mAP

R-50 ADET X 41.5 45.6 61.8 36.5 37.2 53.4

R-50 ADET + SimT X 43.9 46.5 58.9 37.4 37.4 54.3

R-50 SimT X 16.1 14.6 20.9 18.1 17.7 24.0

R-50 SimT→ ADET X 42.8 46.2 60.2 37.5 38.8 53.9

R-50 COCO→ ADET 45.6 41.7 59.4 34.7 32.1 48.9

R-50 COCO→ ADET X 43.4 47.1 54.3 37.1 38.0 53.6

P-105 SimT X 13.6 11.8 16.6 18.6 18.0 24.9

P-105 ADET X 44.3 48.5 62.3 37.9 38.2 52.7

P-105 ADET + SimT X 44.7 47.1 59.8 38.2 39.4 54.1

P-105 SimT→ ADET X 42.7 46.1 59.2 37.7 37.9 54.5

5.2. Simulated Data
With around 20,000 training samples the ADE dataset is

fairly small compared to other datasets which are common in
deep learning such as COCO [74] or OpenImages [83]. To com-
pensate for the small number of training samples we generated
simulated scenes. We propose and assess two methods of inte-
grating simulated data with real world data:

• Joint Training In addition to models trained on individ-
ual datasets, we also train models on both datasets con-
jointly: The datasets are first concatenated and then ran-
domly mixed. This way, each mini-batch for training can
encompass samples from both datasets and each update
of the network weights through the gradient will reflect
this. We will refer to this training method by +, i.e. A + B
means joint training mixing samples from A and B.

• Simulation Pre-Training The network is first trained ex-
clusively on simulated data. Subsequently, in a second
training stage, the network is fine-tuned to the target dataset.
To reflect the sequential nature of this training we denote
it with an arrow (→).

As an alternative to simulated data, we pre-train networks on
the COCO dataset [74], too. Our results are presented in Ta-
ble 5.

The R-50 model seems to take advantage of additional data
and improves most scores (with mAP on ADET being the excep-
tion). The increase is subtle, though. On P-105, performance
on some scores even decreases when simulated data is used.
Regarding the comparison between joint and pre-training we
note that both methods perform on-par. Possibly, this could be
explained by the limited variability in the simulated scenes we
employ here. In general, simulating data seems a promising op-
tion if data is scarce but a more sophisticated simulation model,
which is beyond the scope of this paper, would possibly be re-
quired.

Table 6: Performance on the Oregon dataset. NYU indicates the orig-
inal roughly 50-50 train-test split, while OWN uses more samples for
training.

IoU

model train dataset @0.1 @0.5 mAP

R-50 OregonNYU 26.0 16.8 34.5

R-50 OregonOWN 29.3 20.5 39.4

P-105 OregonNYU 30.1 22.1 42.6

P-105 OregonOWN 34.2 26.9 50.3

R-50 ADET + SimT→ OregonNYU 53.0 56.4 72.4

R-50 ADET + SimT→ OregonOWN 58.1 65.5 83.5

P-105 ADET + SimT→ OregonNYU 59.0 63.0 82.4

P-105 ADET + SimT→ OregonOWN 58.8 63.0 81.9

Roy and Todorovic [27] 49.6 n/a

Roy and Todorovic [27] using GT cues 53.2 n/a

We also find that pre-training on the COCO dataset yields
a similar performance boost as the simulated dataset. However,
considering the enormous annotation efforts of COCO we still
think that simulation is a better option for pre-training. Com-
paring both scores involving COCO also confirms the useful-
ness of the loss masking, which was discussed earlier.

5.3. Comparison to State-of-the-Art Model
Although some previous work is akin to the idea of affor-

dance segmentation we only find the work of Roy and Todor-
ovic [27] to be suitable for a direct comparison. They evaluate
their system on images of the NYUv2 [84] dataset, which pro-
vides depth maps in addition to RGB images as they rely on
3d scans for training their network. They collected pixel-wise
annotations for a set of five affordances for all images of the
NYUv2 dataset. This set does not directly correspond to our
affordances thus we cannot directly run a network, which was
trained with our method on their data. Instead, we make use
of transfer learning: We take a trained model and replace the
last layer responsible for classifying with a new one involving
only five classes. The weights of all other layers are maintained.
During training all weights are changed, i.e. the transfer learn-
ing only affects initializations.

The experiment involves different models and two differ-
ent train/validation/test splits. One is the original NYUv2 split
used in [27], which divides the 1,449 training samples in al-
most equally sized halves. The disadvantage of this split it that
the training set is very small. Therefore we incorporate a more
training-heavy split into the analysis, involving 1,100 samples
for training and validation leaving the remaining samples for
test.

The results reported in Table 6 reveal a strong improvement
over state-of-the-art by models that were pre-trained using our
method. Baselines, that were trained on the NYUv2 affordance
dataset only but with encoders being pre-trained on ImageNet,
performed much worse and don’t even come close to state-of-
the-art. Pre-training, in this case by join-training, on real and
simulated data yields a large performance improvement. All of

10

Figure 8: Probabilistic segmentations generated using our method on
the NYUv2 dataset [84]. Columns (left to right): original image, pre-
dictions of P105, and ground truth.

our models that were trained using this method outperformed
the network of [27]. By switching to a more training-heavy
split, we are able to obtain IoU scores up to 64.5, which is more
than 12 percentage points above state-of-the-art results which
used ground truth cues.

Also the qualitative results shown in Figure 8 are remark-
able. In the bottom row, the P-102 network even discovers a
place-able surface that was not annotated in the ground truth.
Apart from that, the depicted predictions of walk-able, grasp-
able and place-able are close to ground truth.

5.4. Model Comparison

Following the conclusions we can draw from the previous
experiments, we evaluate a set of specifically tuned models for
different purposes and discuss the specific trade-offs. This is
necessary as affordance segmentation can be used in a variety
of diverse environments, such as a mobile robot or a fixed in-
stallation. Each of these environments has its own requirements
with respect to inference speed and CPU/memory demands. As
the encoder carries out a large share of the computations we
compare different encoder sizes, all based on the ResNet archi-
tecture. For comparison, we also report PSPNet scores. Follow-
ing our nomenclature from above, the number after R denotes
the number of layers. Results are shown in Table 7. We find that
a larger encoder does not improve performance, while a smaller
one only has a slight impact on performance.

5.5. Affordance-wise Evaluation

Table 8 reports individual scores for selected configurations.
We can observe a strong variation in performance across the af-
fordances. For example, obstruct, walk and support are learned
well while grasp, place-on and observe turn out to be more chal-
lenging. In particular the small structures of pull and tip-push
seem to be hard to predict as their scores are close to zero.
This is probably due to these structures not only being small

Table 7: Comparison of models. Best performance is achieved by the
most complex models, but even very simple models (R18) can perform
well.

ADEE Expert

IoU IoU

model train data @0.1 @0.5 mAP @0.1 @0.5 mAP

R-152 SimT 16.0 13.9 20.8 18.6 17.8 25.5

R-152 SimT→ ADET 39.3 43.2 56.9 36.9 34.9 54.2

R-152 ADET + SimT 43.1 44.6 56.8 35.7 35.0 53.1

R-50 SimT 16.1 14.6 20.9 18.1 17.7 24.0

R-50 SimT→ ADET 42.8 46.2 60.2 37.5 38.8 53.9

R-50 ADET + SimT 43.9 46.5 58.9 37.4 37.4 54.3

R-18 SimT 16.9 14.9 23.0 20.0 17.6 27.5

R-18 SimT→ ADET 41.7 44.1 56.8 35.6 35.6 51.2

R-18 ADET + SimT 43.3 44.8 57.6 36.9 35.6 53.2

P-105 SimT→ ADET 42.7 46.1 59.2 37.7 37.9 54.5

P-105 ADET + SimT 44.7 47.1 59.8 38.2 39.4 54.1

P-105 ADET + SimT 44.1 46.8 58.7 38.5 38.2 53.9

P-105 ADET + SimT 45.3 47.4 63.1 38.4 36.8 53.8

but also rare. This means they need to be learned from less
samples than other classes, which is more challenging. Addi-
tionally, their geometry might be harder to learn, in particular
as features are more difficult to be recognized due to their small
size. The more complex encoders of PSPNet and R-152 exhibit
the best performance on these small classes, which might be
due to their higher capacity allowing them to preserve details
of smaller structures while encoding. At the same time, larger
networks are more prone to overfitting, because of their larger
number of parameters, which limits their overall performance.

Note, the scores of zero do not mean that rare affordances
are never predicted as we can see in the qualitative evaluation.
Also, due to the cross entropy loss encouraging cautiousness,
the predictions are fairly weak such that false negatives are
common if the same threshold value is used for all affordances.
A possible way to overcome this in practice would be to use a
very low threshold (<0.1) to generate candidates and then ap-
ply an application-specific post-processing to remove false de-
tections. Alternatively, false detections could be filtered by
rule-based approaches using heuristics.

As we can see in the last row, modifying the loss to be a
mean over class-specific losses instead of a pixel-wise loss does
not improve in rare classes. It seems that, for now, the most
straightforward way to get better performance would be to use
more training samples.

5.6. Speed Trade-off

In practice, networks cannot be arbitrarily large and the
availability of memory is limited. This holds in particular if
a robotic platform is used, which runs on batteries. To obtain
an intuition on the respective trade-offs of the models we re-
port inference time and memory footprint of selected models in
Figure 9. Here, we constrain the batch size to one as we ex-

11

Table 8: Performance for individual affordances. The IoU threshold is 0.1. * indicates that class mean loss is used.

obstruct break sit grasp pull tip-push illum. observe support place-on roll walk mean

model dataset IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP

P-102 SimT→ ADET 87.5 94.1 41.6 71.8 40.4 53.7 19.3 29.5 3.3 1.6 3.1 11.2 7.4 24.9 23.2 40.1 54.4 89.7 29.4 44.6 72.3 96.3 70.8 96.0 37.7 54.5

R-152 SimT→ ADET 86.4 94.1 38.6 69.2 30.6 41.3 19.0 34.2 1.2 0.8 8.6 5.4 5.5 30.4 28.0 47.5 53.5 89.1 24.6 45.9 75.0 96.6 72.1 96.2 36.9 54.2

R-50 SimT→ ADET 87.6 93.5 38.1 73.2 41.4 60.2 17.7 25.0 1.2 1.0 5.3 3.0 12.4 23.7 27.4 40.7 53.3 90.2 27.0 42.7 69.4 96.9 69.2 96.7 37.5 53.9

R-50 SimT 79.4 87.7 14.5 16.9 8.8 11.9 8.0 7.7 0.0 0.4 0.0 0.2 16.0 23.3 3.5 8.4 27.8 50.0 14.4 21.1 22.5 30.5 22.7 29.8 18.1 24.0

R-18 SimT→ ADET 86.6 93.7 36.2 67.1 35.3 46.8 19.3 30.2 2.3 1.0 2.7 1.3 11.1 19.8 24.2 42.4 51.9 88.5 21.0 32.1 69.1 96.1 67.5 95.8 35.6 51.2

R-50* ADET 85.7 93.9 27.1 60.6 27.4 42.0 16.8 23.0 0.0 0.6 0.0 0.5 11.6 30.6 21.6 36.3 49.7 85.3 18.4 27.8 59.8 93.0 54.6 92.9 31.1 48.9

200 300 400 500 600 700
size [px]

10

25

50

100

200

ti
m

in
g

s
[m

s]

R-50-m

R-18-m

R-152-m

P-105

Figure 9: Speed vs. accuracy trade-off between the models. Note, we
use the log scale of timings for better readability, the execution speed
grows exponential with image size.

pect that responses of the system are required immediately in
realtime systems.

5.7. Qualitative Evaluation

In addition to these quantitative findings we now discuss
qualitative output of the models on various different scenes. In
Figure 10 we show predictions of network P-102. For these re-
sults we do not use binarization but visualize the probabilistic
predictions directly. All colored pixels encode the probabil-
ity for the corresponding affordance by color intensity. This
renders an assessment of the degree of confidence the model at-
tains for any given pixel’s affordance. Mixed colors indicate the
presence of multiple affordances. The here used images chal-
lenge the network with difficult situations like front-lighting
and transparent materials. We observe that the network gen-
eralizes well to these new situations, even small structures are
mostly correctly predicted, for instance the drawer knobs in the
bottom row. There are some false positive cases: The tissue and
soap dispenser and the trash bin in the second row are marked
as grasp-able. However, in order to know that these items are
actually fixed one would need to physically inspect the scene
(the trash bin could well be detachable), so, given only an im-
age, these predictions are plausible. Another observation is that

the prediction intensity is sometimes weak, as in the second
column for place-on. However, depending on the application,
this can overcome either by scaling the intensities or By some
post-processing.

Figure 11 features a qualitative comparison showing the
same scenes but predictions of different models. Here we can
see that the predictions of the networks look fairly similar, which
could be expected since both were trained on the same data.
Furthermore, the subtle differences between the models are in
accordance with the quantitative findings above.

5.8. Robot Experiment

In order to demonstrate the potential of the proposed system
we performed a robotic experiment using a KUKA LWR robot-
arm [85] with a 3-finger Schunk SDH hand [86]. The task for
the robot was to conduct simple manipulation actions based on
an affordance segmentation of the scene.

Execution of robotic actions is based on our previous work
and was implemented using a library of manipulation actions
[87, 88], which utilizes modified dynamic movement primitive
(DMP) framework [89, 90], for trajectory generation. DMPs
are formalized as stable attractor dynamic system and can gen-
eralize to new start and end points while being robust against
perturbations. Specifically, here we used “pick-and-place”, “take
down” and “push” (to perform pull) actions to manipulate an
object or an object part in the scene. For simplicity, in our
study we used predefined object poses. In general, this can be
done using existing state-of-the-art methods for pose estimation
[91, 92], however, this is out of the scope of our study.

We show how affordance maps enable the robot to select
and perform actions that are at that moment available in a scene.
As we are not interested in any kind of planning problem, we let
the robot “decide what to do” on its own, implementing some
kind of playful mode. The robot had to select and perform
two actions in a sequence. Hence, affordances need to be re-
analyzed after the first action. However, this does not perturb
execution of the second action due to the speed of affordance
computation. Figure 9 has already shown that new affordances
can be provided in realtime.

As in all quantification experiments above, affordances are
assigned in a pixel-wise manner, where the color-intensity in
the visualization (Figure 12) indicates the existence probability
of the affordance. Hence, thresholding the affordance map en-
ables determination of potential target locations, such that un-

12

Original grasp, sit, pull observe, walk, place-on all affordances

Figure 10: Probabilistic segmentations generated by the network P-102 jointly trained with simulated data. From left to right: Original Image;
predictions grasp (blue), sit (green), pull (red); predictions of observe (cyan), walk (pink), place (yellow); all 12 affordance map predictions in
their original form with the intensity corresponding to the presence probability of the affordance. Note, these images are not from the ADE
dataset and therefore no ground truth is shown.

P-102 R-50 R-50 R-18
Original (joint training) (joint training) (pre-training) (pre-training)

Figure 11: Probabilistic segmentations generated by different networks. Row 1 and 2: grasp, sit, pull, Row 3: observe, walk, place. Note, image
sizes vary as the networks are fully convolutional and there is no need to rescale to a common resolution.

13

Sequence 1.1: Picking-up the cup and placing it on the left side of the cupboard

Sequence 1.2: Picking-up the bottle and placing it on the shelf inside the cupboard

Sequence 2.1: Opening the door of the cupboard by pulling the handle

Sequence 2.2: Picking-up the cup and placing it on the shelf inside the cupboard

Figure 12: Results of execution of two action sequences based on affordance maps obtained using R-50. Affordance maps (left) and selected
frames of robot action executions (right) are shown. For the complete experiment see supplementary video. Colors denote grasp (green), place
(blue) and pull (red).

14

Figure 13: Qualitative Evaluation in a lab setting using R-50. Left: Frames from the experiment with corresponding affordances, right: the same
objects from a different perspective. Colors denote grasp (green), place (blue) and pull (red).

likely places, like “placing on the bottom shelf” (faint blue in-
tensity), are ruled out. No explicit object knowledge is required
for this task and – as mentioned – no planner was used. The
general setting is illustrated in Figure 1.

We show two such action sequences resulting from this setup
given the same initial conditions: 1) pick-and-place a cup and
take a bottle down; and 2) pull a handle and take a cup down.
Note that pick-and-place and take down actions consist of a se-
quence of grasp, place and release actions. Results of the robot
experiment are shown in Figure 12, where we show affordance
maps obtained using R-50 and the key frames of the robot ac-
tion execution (please see supplementary video for the full ex-
periment). It is important to stress that the network has not been
trained on this kind of the scenes. We can see that the affor-
dances of objects (the bottle and the cup) and object parts (the
door handle and the shelf) were correctly identified and action
sequences successfully executed.

In order to show robustness and generalization abilities of
our approach we have also generated affordance maps for five
other scenes with different object configurations and different
perspectives. The scenes and their corresponding affordance
maps are presented in Figure 13. Again, note that the train-
ing set (same as for Figure 12) for these experiments consists
of scenes, which are quite different from the ones shown here.
It can be seen that most of the here-considered affordances are
correctly assigned and not many errors are found. Challeng-
ing (e.g. transparent) objects are also correctly identified. The
ground plane is usually not considered for a placing affordance
as the system would recognize it rather as “walk-able” (color-
ing not shown). Surfaces, which are nearly horizontal, appear
in the 2D image with only a few pixels and the system also con-
siders them not for placing. Furthermore, some other placing-
surfaces are only partially detected. But note, that these results
are all based only on single 2D views. Methods for accumu-
lating knowledge (e.g. based on a voting scheme across a se-
quence of images) can without problems be added to further im-
prove on this. However, already these results demonstrate that
our approach can generalize very well to different scenes with
variable object configurations even though the network has not

been specifically trained on such scenes.

6. Conclusion

In this paper we have described a method that labels a com-
paratively large set of 12 affordances pixel-wise given only sin-
gle 2D RGB images. We have shown how to construct an affor-
dance training dataset from object parts segmentation and apply
recent semantic segmentation methods to learn affordances ef-
fectively. An extensive analysis on the impact of modifications
to the loss, sampling and architecture has been carried out. The
state-of-the-art method of Roy and Todorovic [27] is substan-
tially outperformed by adopting features that were obtained us-
ing our method.

A strength of our method is that it is fast (less than 10ms)
while operating on 2D images of arbitrary size. It is applica-
ble on all kinds of scenes, even in presence of light-absorbing,
transparent and reflecting materials where structured light can-
not be used. Hence, it can easily be adapted to multiple sce-
narios. The transfer to a scene that had not been part of any
training set was not a problem in the here-shown robotic test.
When our method is to used in practical applications it can eas-
ily be modified: The set of affordances can be adopted accord-
ing to the capabilities of a robot or detection thresholds of in-
dividual affordances can be modified. The field of autonomous
robotics, for example considering service robots, relies heavily
on semantic scene analysis methods. We think that the here-
presented fast and simple 2D-affordance detection can be used
to provide a machine with good estimates of what to do in a
scene using few computational resources. Given a task (“clean
up the room”) and pairing this type of affordance analysis with
planning algorithms would make such a system applicable in
different domains that require autonomous action decisions.

Acknowledgment

This research was funded by the European Union H2020-
ICT-2016-2017/H2020-ICT-2016-1 / 731761 (IMAGINE)

15

References

[1] J. J. Gibson, The Ecological Approach to Visual Perception, Houghton
Mifflin, 1979.

[2] H. Grabner, J. Gall, L. Van Gool, What makes a chair a chair?, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
2011.

[3] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
image computing and computer-assisted intervention, Springer, 2015.

[4] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network,
in: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[5] M. T. Turvey, Affordances and prospective control: An outline of the
ontology, Ecological psychology 4 (3) (1992) 173–187.

[6] A. Chemero, An outline of a theory of affordances, Ecological psychol-
ogy 15 (2) (2003) 181–195.

[7] E. Rietveld, J. Kiverstein, A rich landscape of affordances, Ecological
Psychology 26 (4) (2014) 325–352.

[8] D. G. Dotov, L. Nie, M. M. De Wit, Understanding affordances: history
and contemporary development of Gibson’s central concept, Avant: the
Journal of the Philosophical-Interdisciplinary Vanguard .

[9] L. Lobo, M. Heras-Escribano, D. Travieso, The History and Philosophy
of Ecological Psychology, Frontiers in Psychology 9 (2018) 2228, ISSN
1664-1078.

[10] W. H. Warren, Perceiving affordances: Visual guidance of stair climbing.,
Journal of experimental psychology: Human perception and performance
10 (5) (1984) 683.

[11] W. G. Cole, G. L. Chan, B. Vereijken, K. E. Adolph, Perceiving affor-
dances for different motor skills, Experimental brain research 225 (3)
(2013) 309–319.

[12] J. Franchak, K. Adolph, Affordances as probabilistic functions: Implica-
tions for development, perception, and decisions for action, Ecological
Psychology 26 (1-2).

[13] J. B. Wagman, S. E. Caputo, T. A. Stoffregen, Hierarchical nesting of af-
fordances in a tool use task., Journal of Experimental Psychology: Human
Perception and Performance 42 (10) (2016) 1627.

[14] M. Stark, P. Lies, M. Zillich, J. Wyatt, B. Schiele, Functional object class
detection based on learned affordance cues, in: International Conference
on Computer Vision Systems (ICVS), Springer, 2008.

[15] Y. Zhu, A. Fathi, L. Fei-Fei, Reasoning about Object Affordances in a
Knowledge Base Representation, in: European Conference on Computer
Vision (ECCV), Springer, 408–424, 2014.

[16] C. Ye, Y. Yang, C. Fermüller, Y. Aloimonos, What Can I Do Around
Here? Deep Functional Scene Understanding for Cognitive Robots, in:
ICRA, vol. abs/1602.00032, 2017.

[17] J. Sawatzky, A. Srikantha, J. Gall, Weakly supervised affordance detec-
tion, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, 2017.

[18] J. Sawatzky, M. Garbade, J. Gall, Ex Paucis Plura: Learning Affordance
Segmentation from Very Few Examples, in: German Conference on Pat-
tern Recognition (GCPR), 2018.

[19] A. Myers, C. L. Teo, C. Fermüller, Y. Aloimonos, Affordance Detection
of Tool Parts from Geometric Features, in: ICRA, 2015.

[20] A. Nguyen, D. Kanoulas, D. G. Caldwell, N. G. Tsagarakis, Object-based
affordances detection with convolutional neural networks and dense con-
ditional random fields, in: Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, IEEE, 5908–5915, 2017.

[21] A. Gupta, S. Satkin, A. A. Efros, M. Hebert, From 3D Scene Geometry to
Human Workspace, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[22] D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev, J. Sivic, People
watching: Human actions as a cue for single view geometry, International
Journal of Computer Vision (IJCV) 110 (3).

[23] H. Kjellström, J. Romero, D. Kragic, Visual object-action recognition:
Inferring object affordances from human demonstration 115 (1).

[24] X. Wang, R. Girdhar, A. Gupta, Binge watching: Scaling affordance
learning from sitcoms, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[25] M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, M. Nießner, SceneGrok:
Inferring action maps in 3D environments, ACM transactions on graphics
(TOG) 33 (6).

[26] N. Rhinehart, K. M. Kitani, Learning action maps of large environments
via first-person vision, in: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016.

[27] A. Roy, S. Todorovic, A Multi-scale CNN for Affordance Segmentation
in RGB Images, in: European Conference on Computer Vision (ECCV),
Springer, 2016.

[28] T.-T. Do, A. Nguyen, I. Reid, AffordanceNet: An End-to-End Deep
Learning Approach for Object Affordance Detection, in: International
Conference on Robotics and Automation (ICRA), 2018.

[29] H. Min, C. Yi, R. Luo, J.-H. Zhu, S. Bi, Affordance Research in De-
velopmental Robotics: A Survey, IEEE Transactions on Cognitive and
Developmental Systems 8.

[30] P. Zech, S. Haller, S. Rezapour Lakani, B. Ridge, E. Ugur, J. Piater, Com-
putational models of affordance in robotics: a taxonomy and systematic
classification, Adaptive Behavior 25 (5) (2017) 235–271.

[31] K. F. Uyanik, Y. Calskan, A. K. Bozcuoglu, O. Yuruten, S. Kalkan,
E. Sahin, Learning social affordances and using them for planning, in:
Proceedings of the Annual Meeting of the Cognitive Science Society,
vol. 35, 2013.

[32] A. Saxena, J. Driemeyer, A. Y. Ng, Robotic grasping of novel objects us-
ing vision, The International Journal of Robotics Research 27 (2) (2008)
157–173.

[33] R. Detry, D. Kraft, A. G. Buch, N. Krüger, J. Piater, Refining grasp af-
fordance models by experience, in: Robotics and automation (icra), 2010
ieee international conference on, IEEE, 2287–2293, 2010.

[34] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger,
J. Piater, Learning grasp affordance densities, Paladyn, Journal of Behav-
ioral Robotics 2 (1) (2011) 1–17.

[35] A. Ückermann, C. Elbrechter, R. Haschke, H. Ritter, 3D scene segmen-
tation for autonomous robot grasping, in: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, ISSN 2153-0866, 1734–
1740, 2012.

[36] H. Guo, Y. Meng, Distributed reinforcement learning for coordinate
multi-robot foraging, Journal of intelligent & robotic systems 60 (3-4)
(2010) 531–551.

[37] S. Griffith, V. Sukhoy, T. Wegter, A. Stoytchev, Object categorization in
the sink: Learning behavior–grounded object categories with water, in:
Proceedings of the 2012 ICRA Workshop on Semantic Perception, Map-
ping and Exploration, Citeseer, 2012.

[38] V. Tikhanoff, U. Pattacini, L. Natale, G. Metta, Exploring affordances
and tool use on the iCub, in: Humanoid Robots (Humanoids), 2013 13th
IEEE-RAS International Conference on, IEEE, 130–137, 2013.

[39] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, R. Dillmann,
Object–Action Complexes: Grounded abstractions of sensory–motor
processes, Robotics and Autonomous Systems 59 (10) (2011) 740 – 757,
ISSN 0921-8890, doi:https://doi.org/10.1016/j.robot.2011.05.009, URL
http://www.sciencedirect.com/science/article/pii/S0921889011000935.

[40] O. Yürüten, E. Şahin, S. Kalkan, The learning of adjectives and nouns
from affordance and appearance features, Adaptive Behavior 21 (6)
(2013) 437–451.

[41] A. Stoytchev, Behavior-grounded representation of tool affordances, in:
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, IEEE, 3060–3065, 2005.

[42] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, L. De Raedt,
Learning relational affordance models for robots in multi-object manip-
ulation tasks, in: Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, IEEE, 4373–4378, 2012.

[43] E. Ugur, J. Piater, Bottom-up learning of object categories, action effects
and logical rules: From continuous manipulative exploration to symbolic
planning, in: Robotics and Automation (ICRA), 2015 IEEE International
Conference on, IEEE, 2627–2633, 2015.

[44] S. Fichtl, D. Kraft, N. Krüger, F. Guerin, Bootstrapping Relational Affor-
dances of Object Pairs Using Transfer, IEEE Transactions on Cognitive
and Developmental Systems 10 (1) (2018) 56–71, ISSN 2379-8920, doi:
10.1109/TCDS.2016.2616496.

[45] E. Uğur, E. Şahin, Traversability: A case study for learning and perceiv-
ing affordances in robots, Adaptive Behavior 18 (3-4) (2010) 258–284.

[46] E. Ugur, M. R. Dogar, M. Cakmak, E. Sahin, The learning and use
of traversability affordance using range images on a mobile robot, in:
Robotics and Automation, 2007 IEEE International Conference on, IEEE,

16

1721–1726, 2007.
[47] J. Sun, J. L. Moore, A. Bobick, J. M. Rehg, Learning visual object

categories for robot affordance prediction, The International Journal of
Robotics Research 29 (2-3) (2010) 174–197.

[48] M. A. Lewis, H.-K. Lee, A. Patla, Foot placement selection using non-
geometric visual properties, The International Journal of Robotics Re-
search 24 (7) (2005) 553–561.

[49] C. Barck-Holst, M. Ralph, F. Holmar, D. Kragic, Learning grasping af-
fordance using probabilistic and ontological approaches, in: Advanced
Robotics, 2009. ICAR 2009. International Conference on, IEEE, 1–6,
2009.

[50] A. Bierbaum, M. Rambow, T. Asfour, R. Dillmann, Grasp affordances
from multi-fingered tactile exploration using dynamic potential fields, in:
Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International
Conference on, IEEE, 168–174, 2009.

[51] J. Baleia, P. Santana, J. Barata, On exploiting haptic cues for self-
supervised learning of depth-based robot navigation affordances, Journal
of Intelligent & Robotic Systems 80 (3-4) (2015) 455–474.

[52] J. T. Carvalho, S. Nolfi, Behavioural plasticity in evolving robots, Theory
in Biosciences 135 (4) (2016) 201–216.

[53] D. Song, N. Kyriazis, I. Oikonomidis, C. Papazov, A. A. Argyros,
D. Burschka, D. Kragic, Predicting human intention in visual observa-
tions of hand/object interactions, in: ICRA, 2013.

[54] D. Song, C. H. Ek, K. Huebner, D. Kragic, Task-based robot grasp plan-
ning using probabilistic inference, IEEE transactions on robotics 31 (3)
(2015) 546–561.

[55] A. Aldoma, F. Tombari, M. Vincze, Supervised learning of hidden and
non-hidden 0-order affordances and detection in real scenes, in: Robotics
and Automation (ICRA), 2012 IEEE International Conference on, IEEE,
1732–1739, 2012.

[56] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et al., Shapenet: An information-
rich 3d model repository, arXiv preprint arXiv:1512.03012 .

[57] C. Chen, A. Seff, A. L. Kornhauser, J. Xiao, DeepDriving: Learning Af-
fordance for Direct Perception in Autonomous Driving, 2015 IEEE Inter-
national Conference on Computer Vision (ICCV) .

[58] O. Kroemer, J. Peters, A flexible hybrid framework for modeling complex
manipulation tasks., in: ICRA, 1856–1861, 2011.

[59] P. Kaiser, D. I. Gonzalez-Aguirre, F. Schultje, J. B. Sol, N. Vahrenkamp,
T. Asfour, Extracting whole-body affordances from multimodal explo-
ration, 2014.

[60] P. Kaiser, M. Grotz, E. E. Aksoy, M. Do, N. Vahrenkamp, T. Asfour,
Validation of whole-body loco-manipulation affordances for pushability
and liftability, in: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th
International Conference on, IEEE, 920–927, 2015.

[61] B. Akgun, N. Dag, T. Bilal, I. Atil, E. Sahin, Unsupervised learning of
affordance relations on a humanoid robot, in: Computer and Information
Sciences, 2009. ISCIS 2009. 24th International Symposium on, IEEE,
254–259, 2009.

[62] W. P. Chan, Y. Kakiuchi, K. Okada, M. Inaba, Determining proper grasp
configurations for handovers through observation of object movement
patterns and inter-object interactions during usage, in: Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
IEEE, 1355–1360, 2014.

[63] D. I. Kim, G. S. Sukhatme, Semantic labeling of 3d point clouds with
object affordance for robot manipulation, in: Robotics and Automation
(ICRA), 2014 IEEE International Conference on, Citeseer, 5578–5584,
2014.

[64] A. Stoytchev, Robot tool behavior: A developmental approach to au-
tonomous tool use, Ph.D. thesis, Georgia Institute of Technology, 2007.

[65] C. Wang, K. V. Hindriks, R. Babuska, Robot learning and use of affor-
dances in goal-directed tasks, in: Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, IEEE, 2288–2294, 2013.

[66] F. Cruz, S. Magg, C. Weber, S. Wermter, Training agents with interactive
reinforcement learning and contextual affordances, IEEE Transactions on
Cognitive and Developmental Systems 8 (4) (2016) 271–284.

[67] C. Castellini, T. Tommasi, N. Noceti, F. Odone, B. Caputo, Using ob-
ject affordances to improve object recognition, IEEE Transactions on Au-
tonomous Mental Development 3 (3) (2011) 207–215.

[68] E. Ugur, J. Piater, Emergent structuring of interdependent affordance
learning tasks, in: Development and Learning and Epigenetic Robotics

(ICDL-Epirob), 2014 Joint IEEE International Conferences on, IEEE,
489–494, 2014.

[69] E. Ugur, E. Oztop, E. Sahin, Goal emulation and planning in percep-
tual space using learned affordances, Robotics and Autonomous Systems
59 (7-8) (2011) 580–595.

[70] A. T. L. Nguyen, D. Kanoulas, D. G. Caldwell, N. G. Tsagarakis, De-
tecting object affordances with Convolutional Neural Networks, 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2016) 2765–2770.

[71] N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy,
T. Brox, What Makes Good Synthetic Training Data for Learning Dis-
parity and Optical Flow Estimation?, International Journal of Computer
Vision 126 (9) (2018) 942–960, ISSN 1573-1405.

[72] F. S. Saleh, M. S. Aliakbarian, M. Salzmann, L. Petersson, J. M. Alvarez,
Effective Use of Synthetic Data for Urban Scene Semantic Segmentation,
The European Conference on Computer Vision (ECCV) .

[73] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Seman-
tic understanding of scenes through the ade20k dataset, arXiv preprint
arXiv:1608.05442 .

[74] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, C. Zitnick, Microsoft COCO: Common Objects in Context, in:
D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), European Conference
on Computer Vision (ECCV), vol. 8693, Springer International Publish-
ing, ISBN 978-3-319-10601-4, 2014.

[75] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for se-
mantic segmentation, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015.

[76] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille,
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs, IEEE Transactions on
Pattern Analysis and Machine Intelligence 40.

[77] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Im-
age Recognition, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[78] P. O. Pinheiro, T.-Y. Lin, R. Collobert, P. Dollar, Learning to Refine Ob-
ject Segments, in: European Conference on Computer Vision (ECCV),
2016.

[79] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) 2009, IEEE, 248–255,
2009.

[80] T. Lüddecke, F. Wörgötter, Learning to Segment Affordances, in: Inter-
national Computer Vision Conference Workshops (ICCVW), 2017.

[81] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch,
in: NIPS Workshops, 2017.

[82] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude, COURSERA: Neural networks
for machine learning 4 (2).

[83] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,
A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, S. Kamali,
M. Malloci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes,
A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan,
K. Murphy, OpenImages: A public dataset for large-scale multi-
label and multi-class image classification., Dataset available from
https://storage.googleapis.com/openimages/web/index.html .

[84] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and
support inference from RGBD images, in: European Conference on Com-
puter Vision, Springer, 746–760, 2012.

[85] KUKA AG, LWR, URL https://www.kuka.com/en-de/products/,
accessed 08.04.2019.

[86] Schunk, SDH Hand, URL https://schunk.com/pl en/gripping-systems/series/sdh/,
accessed 08.04.2019.

[87] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, F. Wörgötter,
Toward a library of manipulation actions based on semantic object-
action relations, in: 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 4555–4562, doi:10.1109/IROS.2013.6697011,
2013.

[88] M. J. Aein, E. E. Aksoy, F. Wörgötter, Library of Actions: Implementing
a Generic Robot Execution Framework by Using Manipulation Action
Semantics, IJRR (in press) .

17

[89] A. J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear
dynamical systems in humanoid robots, in: Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (Cat. No.02CH37292),
vol. 2, 1398–1403, doi:10.1109/ROBOT.2002.1014739, 2002.

[90] T. Kulvicius, K. Ning, M. Tamosiunaite, F. Worgötter, Joining Movement
Sequences: Modified Dynamic Movement Primitives for Robotics Ap-
plications Exemplified on Handwriting, IEEE Transactions on Robotics
28 (1) (2012) 145–157, doi:10.1109/TRO.2011.2163863.

[91] J. Papon, M. Schoeler, Semantic pose using deep networks trained on
synthetic RGB-D, in: Proceedings of the IEEE International Conference
on Computer Vision, 774–782, 2015.

[92] A. Collet, M. Martinez, S. S. Srinivasa, The MOPED framework: Ob-
ject recognition and pose estimation for manipulation, The International
Journal of Robotics Research 30 (10) (2011) 1284–1306.

18

