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Abstract

An essential capability of humans is the effortless identification of useful tasks based on vi-
sual cues in everyday situations. Objects and their surroundings are integrated and processed to
differentiate plausible from implausible actions. In this work, we study how to teach this ability
to robots. In contrast to many tasks in computer vision where the goal is an accurate description
(object labels, caption, scene class) of the present situation here the challenge is to make reason-
able guesses about which forms of plausible and implausible actions can be conducted. To this
end, we collect a dataset that associates images with probabilities over a set of actions. A con-
volutional neural network is trained to match these ground truth plausibility scores using this
dataset. We compare the performance of state-of-the-art encoder architectures and specifically
analyze the role of contextual cues quantitatively. While the object recognition capabilities of
the encoder have a strong impact on performance, using context did not lead to substantial im-
provements. We show qualitatively the utility of such a system for robotic action selection in a
household setting.

1 Introduction

In a given situation humans often have plenty of action possibilities, but commonly only a tiny
fraction is appropriate. Making such action decisions in everyday life feels effortless and often
happens subconsciously. The sense of appropriateness that guides the decision is probably not
innate but learned, while growing up. Robotic systems, however, naturally lack this skill and
therefore, can exhibit a behavior that is surprising and unexpected for humans due to the robot’s
misinterpretation of a situation. Thus, transferring this particular aspect of common-sense knowl-
edge to machines would have a great impact on their usability, in particular for situations where
interaction with humans is required.

The problem of representing common-sense knowledge itself is not new and has been ad-
dressed for decades. Most of these past approaches to represent common-sense facts are sym-
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Figure 1: The idea presented in this paper: Based on human ratings, a CNN is trained to learn
the plausibility of actions in different contexts. The sketch on the right side highlights that small
changes in the image can have strong impact on action plausibility.

bolic, i.e. they assume that knowledge can be expressed in terms of a finite set of discrete symbols
and their relations. While this comes with the advantage of interpretability, it is unlikely that all
knowledge can be easily expressed in this form, and this is especially problematic for inherently
continuous facts such as the likelihood of eating from a dish decreases with its level of dirtiness. Examples
of this kind of knowledge representation can be found in the psychological literature where action
possibilities (affordances) are modeled as probabilistic functions instead of binary attributes [12].

Symbolic approaches fail if they only take class labels into account as contextual and if appear-
ance details are crucial for a task. Simple symbolic mappings (like object labels mapped to actions)
are doomed, because common object classes are very broad (high within-class variance). For ex-
ample, the class ”cup” consists of full and empty cups as well as cups with and without handle.
However, actions often depend on the state of the object, which cannot be inferred from such sim-
ple labels. Often, the state can be much more informative concerning an action than the object
label, since an action can be compatible with a broad range of object classes in a certain state. Of
course, with quite some effort these aspects can be incorporated into symbolic systems, too. How-
ever, for this all relevant details need to be known and specified a-priori. If the fill-level of a cup
is critical for drinkability, a logical variable “fill-level” needs to be added to the system along with
an image recognition component that can detect it. The same is true for each and every such object
and situation-dependent aspect leading to a massive effort in pre-defining all of this in the right
way. Different from that, the advantage of our approach is that there is no need to explicitly model
the space of all variables influencing an action as the system learns these relationships end-to-end.

In this article we address the novel problem of rating how plausible certain actions are. An
illustration of this idea is shown in Figure 1. For this purpose, we develop a hybrid system that
represents common-sense knowledge in a distributed, implicit way but also relies on a hard coded
action compatibility table that defines if actions can in-principle be conducted on different object
classes. We take images from the OpenImages dataset [23] and then ask humans to rate how plausi-
ble they consider certain actions. Having obtained a such-labeled dataset, we use it to train a neural
network to predict action plausibilities. This way rules like if dirty dishes are close to each other stack
them or if room is empty use remote control to turn off TV can be learned from the data. Importantly,
after training, the system is able to directly map from pixels to action plausibility probabilities,
evading a symbolic scene representation.
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Contributions The main contribution of this work is a dataset of action plausibilities (Plausi-
blAct) and an associated training procedure based on the mapping from ratings to action plau-
sibilities. Together with a suitable loss function, this allows using conventional CNNs to predict
action plausibilities from images. We are confident that a CNN trained with the proposed method
can be an important component in robotic systems toward endowing them with more situation-
dependent autonomy. This specifically concerns the domain of service robotics where robots need
to identify appropriate maintenance tasks (such as cleaning up) autonomously. Here a robot could
use our method to infer appropriate actions from visual input only without receiving explicit in-
structions from the human. Similarly, context dependent action selection is also important for
machines that need to collaborate with humans and thus have to anticipate human actions. Here
the predictions of our method provide guesses of what the human’s next action might be. The
robot can consider that when conducting own actions, e.g. in order to avoid cooperation conflicts.
Our system is trained to operate on real-world data, which is more challenging than set-up lab
scenes. As a consequence, the method is not only relevant in robotics but also for the computer
vision community where natural images are ubiquitous.

In the following we will first discuss the state of the art, followed by an introduction to the new
data set and the here-used algorithms. Results and conclusions concerning this approach including
its limitations will end the paper.

2 Related Work

We are not aware of any approach that explicitly deals with the problem of rating actions with
respect to their plausibility from observed scenes. However, several related tasks have been ad-
dressed before. Particularly, we discuss anticipation tasks, which try to identify what will happen
next. These share the goal of predicting future actions with our approach but does not differentiate
actions based on their individual likelihood. The latter represents the focus of our work. Subse-
quently, we present an overview, organized by the input data the respective methods use.

Video-based Methods A large body of work in anticipation operates on videos, which seems
natural since movies involve a temporal dimension to base predictions on. In the work of Lan
et al. [25], the next action in a TV show is predicted based on previous frames and object bounding
boxes. For this a hierarchical video representation called movemes is proposed. The anticipation
of human activities that is addressed in Koppula and Saxena [21] can be considered a closely re-
lated task. They model human pose, object affordances, object locations, and sub-activities in a
graph that changes over time through a temporal conditional random field. By sampling from this
model, prospective activities can be predicted. These possible futures could also involve actions
we are interested in. While their dataset only comprises 120 scenes, we prefer a larger number of
scenes to allow for more detail within scenes. Vondrick et al. [43] model the development of visual
feature representations (obtained from a CNN) over time in a self-supervised setting. Some video
recognition approaches have been evaluated in an early recognition setting [49, 51]. Given only a
certain fraction (e.g. 20%) of the first frames of an action, the goal is to determine the action, which
can also be seen as a weak form of anticipation.

Our task differs from the tasks addressed in these papers in using only a single RGB image as
input. This implies that models cannot rely on patterns that occur in sequences of actions but have
to identify cues in the provided static image. The set of actions we consider is vastly different from
other methods’ sets of actions. Therefore, evaluating on their data is not possible. Furthermore,
some approaches do not frame the problem as a classification task but use a different output space
(e.g. the trajectory evaluation in [21]).
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Still Image-based Methods However, anticipations can be made from static images, too. For
example, Walker et al. [45] predict pixel-wise trajectories. For each pixel a prediction of how it
will evolve in the future is conducted using an autoencoder. A similar idea is pursued by Chao
et al. [4]. Instead of dense pixel trajectories, they specialize entirely on anticipating pose dynamics.
Similar to us, Vu et al. [44] predict distributions over plausible actions from images for which they
collected the SUN Action dataset. While they predict general actions for whole scenes, we focus on
more specific actions considering only individual objects. Fouhey and Zitnick [11] follow a single
image setting, too, but they use abstract scene representations to learn what might happen next.
Instead of predicting specific actions they consider the dynamics of objects.

In the work of Qi et al. [33], interactions between humans and objects are studied in images as
well as in videos. Scenes are parsed into a graph that indicates relations between objects. In one
experiment, this graph is used to anticipate future activities on the CAD-120 dataset [22]. Similarly,
to the video-based methods a direct comparison with these methods is not feasible due to different
output labels (e.g. [44] uses a large set of generic actions such as “talk” or “drive”). However, we
conduct a comparison with [44] by training our CNN on their data in Section 5.3.

Psychology and the Concept of Affordances Action plausibility scoring is related to the concept
of affordances coined by Gibson [13] and later refined by Gibson [14, Chapter 8]. While affordances
indicate which interactions with the environment are possible for an agent, they do not come with
any notion of preference. This means, No differentiation about what action is more likely to happen
takes place. Hence, affordances can be considered to be less-abstract than the plausibilities we
propose in this paper. Affordances have been studied in various forms: for whole images [50],
as poses [15], bounding boxes [9, 48], densely for every pixel [28, 29, 31, 34, 37] or from video
[22, 46]. However, existing research is not limited to discovering action possibilities: Mechanisms
that drive the selection of actions have been investigated in neuroscience [1] including the creation
of computational models [6, 39].

Note that the concept of affordances centers strongly on objects, essentially asking: which ac-
tions are suggested by different objects? Agents, humans or robots, however many times are rather
plan-driven and they ask this question the other way round: which object can I use for a planned
action? To better accommodate both types of queries, recently the concept of Object-Action Com-
plexes (OACs) had been introduced [24, 47] that assumes that objects and (planned) actions are
inseparably intertwined. Our current study takes this one step further stating that objects with cer-
tain properties and actions are intertwined. For example, full cups are for drinking, dirty cups for
cleaning, etc.

Several works from experimental psychology address the selection of actions. Riddoch et al.
[35] focus on the relation between object pairs in patients with parietal lesions. They found subjects
to perform better in identifying objects when the objects were arranged correctly for an action to
be directly performed compared to other relative positions of the objects. A similar effect was
found by Roberts and Humphreys [36] in healthy participants. Handy et al. [16] showed that
graspable objects draw attention if they are perceived in the lower right visual field, although they
are irrelevant for the given task. A comprehensive and recent review on the complexity of human
action selection and its relation to (context-dependent) affordances can be found in [3]. In general,
aspects of scene context are not in the core of the older psychological literature but during the last
decade Schubotz and coworkers have more thoroughly addressed this using fMRI [10].

While these works explore a related domain, experimental psychology generally seeks to an-
swer how biological or cognitive mechanisms work. This involves understanding human cognition
[27, 36] or representations of action in the brain [7] rather than enhancing robotic systems. Objective
measures such as reaction time are tracked to allow for a statistical analysis instead of subjective
judgments of participants. Furthermore, psychology often tries to identify linear relationships that
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allow for interpretation. In contrast to work in this field, we gather the content of the responses
(rather than their timings and accuracies) for training complex non-linear models.

3 The PlausiblAct Dataset

In this section, we introduce the PlausiblAct dataset, which associates images with a probability
distribution over a set of ten actions. We explain the design of the dataset from the selection of
actions via collecting data to generating probability distributions from the gathered annotations.
The images of PlausiblAct come from the OpenImages dataset [23], which contains scenes (im-
ages) showing multiple objects with corresponding bounding boxes. For our dataset, we extract
individual objects and denote them as instances.

3.1 Choice of Actions and Ratings

In contrast to labeling object names, it is more challenging to assign actions. Actions are to some
degree subjective, depend on a state (e.g. hungry, tired) or on past actions. Therefore, a key chal-
lenge in this work is to constrain the setting in such a way that actions become less subjective. To
this end, we focus on actions that tend to be unconditional. This involves actions whose utility im-
mediately pops up when a scene is perceived, without depending on the state of the observer. We
say “tend to” because even under these considerations the here-chosen actions remain somewhat
conditioned on the state but to a smaller extent than many others. Specifically, actions, which are
either plan-driven (e.g. to hammer a nail to fix something) or mood-driven (e.g. watch TV, read a
book) are excluded. In such cases we would not expect the actions to be reliably rate-able as raters
might assume different states leading to inconsistent ratings.

We identify a set of ten actions A that match these principles. They are presented in Figure 2.
In addition to actions, we need to define possible ratings for an action instance. In order to reduce
the cognitive load for the raters, we follow a simple approach and use only three possible ratings
R = {impossible, implausible,plausible}. While impossible refers to the physical layout of a scene,
plausibility decisions often depend on the context within a scene.

For each of these ten actions, we manually enumerate the complete subset of compatible object
classes from all 600 object classes in OpenImages [23] (see appendix). Compatible means that,
based on the object class name, it is hypothetically possible to conduct the action on an object of
this class. E.g. a glass is hypothetically compatible with the action drinking, but not always, as
it can be empty. Incompatible object-action pairs (as specified by the table in the appendix) are
implicitly rated as impossible. For instance, let us assume there were only the actions eat and sit
on and the object cake. Then defining the set of eat-able objects to be {cake} implies that the cake is
never sit-able.

3.2 Scene and Instance Selection

Having defined compatibility between actions and objects, the next step is to select good scenes
from the set of remaining scenes. Note that people do not take photos randomly. They rather focus
on beautiful and tasty things. E.g. food is most often photographed before and not during eating.
This leads to image databases not really being representative illustrations of reality but collections
of cherry-picked moments. However, to generate reasonable action plausibilities we need a good
coverage of all situations. In the following, we introduce mechanisms that counteract these biases.

As a first step, scenes are excluded when one of these criteria is met:

• Small coverage (less than 2% of all pixels), as the crop would not be recognizable.
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Figure 2: Left: Frequencies of the ratings for each action. The top three rows refer to the subset,
the other rows to the action. Right: Screen-shot of the annotation tool (in this screenshot, Open-
Images images have been replaced by own images for copyright issues.). In blue we highlight the
indicators that point to required samples. By clicking “incomplete” only required samples will be
shown.

• Large coverage (more than 70% of all pixels), as there would be little room for context.

• Contains a human, as this would often require the rater (and later-on also the system) to infer
intention, which we consider beyond the scope of this paper.

Furthermore, we maintain only one bounding box if two bounding boxes overlap with an intersec-
tion over union of over 0.5. Then we use the one for the less frequent class. Lastly, we manually
remove scenes showing humans that were not considered by the labels and hence slipped through
our previous filtering mechanism. Additionally, product photos and images having poor quality
are manually removed. Lastly, we put an upper limit on the number of occurrences of each object
class. To prefer larger objects we sort all instances descending by size and then select the first 1000
instances of each object class which increases the variety of the included object classes.

3.3 Collection of Annotations

Annotations are gathered using a web-based interface. After receiving instructions and being
shown example ratings, raters could explore a large number of instances for each action. The order
of instances is shuffled individually for each rater. Which instances are available for which action
depends on the manually defined compatibility between object classes and actions, e.g. drinking
from a chair is incompatible and therefore not presented. This way, we reduce the workload of the
raters as they do not have to rate many impossible actions. Each rater sees the compatible instances
in a different, randomized order and chooses freely which instances to rate and which to ignore
(not rate).

Rater instructions All raters received explicit instructions. Pilot experiments suggest that these
are critical for obtaining a reasonable inter-rater reliability as the annotation of actions can be highly
ambiguous. Following our observations from the pilot experiments, we instructed raters to follow
three principles. These are the original instructions presented to the raters:
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• Optimism about the Unseen: If you are uncertain about some unseen aspects of the scene,
please assume the most favorable situation for the given action.

• Immediate Acting: Consider the plausibility of conducting the action without delay. Do not
assume that the action execution could wait.

• Static Scene: Do not assume changes to the scene that make the action possible that go be-
yond the definition of the action. Only consider the presented situation and pay attention to
the action definition.

In addition, we showed eleven examples of how these principles are supposed to be interpreted to
the raters.

Consider rating a scene involving an opaque bottle on a table regarding the action drink. The
principles above mean that the action should be rated by assuming that the bottle contains drink-
able liquid (optimism), the table layout cannot be changed (static scene) and we cannot conduct
other actions before drinking (like filling the bottle first).

While we first experimented with a sequential design, where only one instance at a time is
presented to the rater, we finally decided to employ a multi-scene paradigm. For a given action,
multiple scenes are presented, and the user can freely select, which instances to annotate. This
allows for faster and more reliable annotations as hard or unclear samples can be skipped. Fur-
thermore, this paradigm allows us to ask the raters to provide a minimal number of ratings for the
categories implausible and plausible, which results in a more balanced dataset. The web-based tool
is shown in Figure 2 (right). We discuss inter-rater reliability in Section 5.2.4, after the explanation
of the metrics used in this work. We use the split in training, validation and test data defined by
OpenImages [23]. For the training data, we allow choosing annotations freely as described above.
As a consequence, the training procedure has to deal with incompletely annotated instances. For
creating the ground truth of the test data, we requested the raters to label instances completely (i.e.
all compatible actions must be rated), which enables computing meaningful metrics on the test set.
For this, indicators of missing instances were shown in the web-based interface to prompt the rater
to complete a rating procedure.

Statistics In Figure 2 (left) and Figure 3 we present distributions of the user-provided ratings for
all actions and selected objects. In total, eight raters provided 28,046 ratings on 18,837 instances.
Impossible was chosen 7,219, implausible 8,922 and possible 11,905 times. The eight raters have
three different nationalities and four of them are male and four are female. Five of them are PhD
students from our department but unaware of the purpose of this work. The other three are re-
cruited students from University of Göttingen and received a compensation of 28 Euros, each. The
raters received an electronic introduction to the task and provided annotations for about three
hours. They were allowed to take breaks when necessary by their own admission. According to
section C.III.6 of the ethical guidelines of the German Psychological Society this experiment does
not require explicit consent. The raters participated voluntarily.

3.4 From Annotations to Plausibilities

Having collected a set of annotations, we need to transform it to trainable data. Each instance may
have received ratings for some actions from one or more raters.

The key idea is to train the network to match the plausibility distribution of the raters for each
instance. Not every instance suggests clear actions and often multiple ratings seem plausible. By
modeling the ground truth as a distribution over ratings we can incorporate a notion of uncer-
tainty. This approach is different from image classification, where the ground truth distribution
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Figure 3: Rating distributions for all actions and frequent objects. Note, ratings are often not
uniformly distributed for objects. Incompatible combinations of action and object are left blank.

accumulates all mass on a single label. In our case this happens only if all raters agree. Moreover,
we predict ten actions per instance simultaneously.

Formally, for every instance i ∈ I (i.e. an object in a scene) we aggregate all associated ratings
into a matrix R(i) ∈ N|A|×3. Each element R

(i)
a,r denotes the count of ratings r for action a. In

addition, a mask v(i) ∈ {0, 1}|A| is computed that indicates which rows (actions) of R(i) are valid
for an instance. This is necessary, because in the training set, annotations can be incomplete. Since
raters can freely choose, which instances to annotate, there is no guarantee that for a given instance
all possible actions are actually rated. The values of unrated yet compatible actions in R(i) are not
informative and therefore must be excluded from the computation of the loss. Thus, later, we will
use v(i) to exclude such undefined actions from being considered in the loss. Note, compatibility
is manually defined by us based on the object names while validity depends on the annotations
provided by the raters. A specific action of an instance can be invalid if it is compatible but did not
receive any ratings. Next, the ground truth plausibility matrix P(i) is generated from R(i).

P(i)
a =


R

(i)
a∑

r R
(i)
a,r

a is compatible with instance i

[1, 0, 0] otherwise

(1)

Here the vector [1, 0, 0] is used to assign the rating impossible to all incompatible actions (as de-
scribed above).

4 Methods

4.1 Loss

Given an input image I of an instance, the network f predicts a matrix that assigns a probability
to each rating for all actions. The rating probabilities for each action must sum to one. The loss
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is calculated by the cross entropy (see Section 4.5 for a definition of cross entropy) between each
action’s predicted rating distribution and the actual distribution obtained from the raters, denoted
by P(i).

L(i) =
1∑

a∈A v
(i)
a

∑
a∈A

CE(f(I(i))a,P(i)
a )v(i)

a

In case an action is required but not provided, the value of P is invalid and should not contribute
to the error expressed by the loss. This is realized by using the validity mask v(i).

Data Augmentation Since we have to cope with limited training data, we apply different forms
of data augmentation in order to increase the robustness of the classifier. This involves random
cropping, adding Gaussian blur, changing gamma and colors of the image. For the sake of simplic-
ity, we control the strength of these operations with a single integer value a. The optimal value for
a is determined experimentally (see Table 2). Note, on the validation and test set images, no aug-
mentation is used. For details on the implementation of augmentation we refer to the Appendix or
the source code.

Implementation We employ batch normalization [19] and early stopping after 3 epochs without
improvement of the validation loss. Weight updates are carried out with ADAM [20]. The code is
implemented based on the PyTorch [32] framework.

4.2 Models

We use state-of-the-art convolutional neural networks architectures that have proven to work well
for image recognition tasks. These include different variations of ResNet [17] and InceptionV4 [41].
Instead of training from scratch, we initialize the networks weights from pre-training on ImageNet
[8] unless otherwise stated.

4.3 Baselines

We start our analysis by introducing two baselines:

• The mode baseline always predicts the most common rating for the depicted object. This is
somewhat unfair since the baseline uses object labels other models do not have. However,
it provides us with insights about how strongly the prediction of an action is tied to the
underlying object class.

• The no input baseline is identical to a normal model but does not receive any image as input.
Hence, the only way it can minimize loss is to learn the dataset distribution. This baseline
provides us with a reference to relate other scores with. If a model does not perform better
than this baseline, it has not learned anything but the biases present in the dataset.

4.4 Context Representations

As stated above, instances are objects within larger scenes. Hence, it might be useful to make the
rest of the scene accessible to the model. For incorporation of this kind of context, we differentiate
between multiple ways, which we describe in the following. Context representations that involve
a “+” imply two inputs (instance image + some context image) to the model and thus require two
separate encoder networks.
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setting 1st input 2nd input

ignore black image -
img+mask instance image context image with instance being masked
img+full instance image context image (no masking)
only-masked context image with instance being masked -
only-full context image (no masking) -

Table 1: Input data for the different context settings

Figure 4: Illustration of how metrics are computed for one instance. Predictions of the network
and ratings of the annotators are collected in two matrices Q and P. By comparing the most likely
ratings for each the accuracy is obtained.

• The trivial case ignore means ignoring the context entirely and considering only the instance’s
object.

• In the img+masked setting, we mask the object bounding box with a black rectangle. Hence,
the network has no access to the object’s visual features but has to rely only on contextual
cues. Additionally, as a second input, the instance image is shown, too.

• In the img+full setting, the entire context is shown (without masking the instance) and the
instance image is provided as a second input.

• In the only-masked setting, the entire context with the instance being masked is shown.

• In the only-full setting, the entire context is shown.

In Table 1 we provide an overview of the different input data types in the context settings.

4.5 Metrics

Obtaining quantitative scores for performance is a challenging task because the model’s predictions
and the ground truth are proper probability distributions. This is different from image classifica-
tion, where the ground truth distribution has only one non-zero element. Furthermore, for each
instance, all ten actions are predicted simultaneously.
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For calculating performance metrics, we compare the ground truth P(i) with Q
(i)
a,r, which rep-

resents the network’s predictions for action a and plausibility rating r of an instance i. The rating
distribution sums to one, i.e.

∑
r∈R Q

(i)
a,r = 1.

All-action Accuracy (A-Acc) A straightforward choice to assess how well the predictions of a
model are aligned with user annotated ratings is accuracy. If the highest mass rating is identical for
prediction and ground truth, an instance is considered to be classified correctly. Note, the highest
mass rating of the ground truth means the rating (impossible, implausible or plausible) that was
most frequently assigned by the raters. We consider accuracy in two settings: 1) Independently for
each action as described above and 2) for all actions of an instance. In the latter case, successful
classification requires the correct prediction of all actions. While accuracy is easy to interpret,
its disadvantage is its sole dependency on the maximum: The actual distribution over the ratings
impossible, implausible and plausible is ignored. E.g. a confident prediction that puts all weight on
plausible is treated equally to an uncertain, close-to-uniform prediction (where plausible happens
to be the maximum by a small margin). This means, accuracy fails to represent the plausibility
distribution as a whole.

A-Acca(P(i),Q(i)) =

{
1 if argmax(P

(i)
a ) = argmax(Q

(i)
a )

0 otherwise

Since we require all actions to be correctly annotated, we apply a min function on all action-wise
accuracies. By averaging over all actions, we obtain the single A-Acc score:

A-Acc =
1

|I|
∑
i∈I

min
a∈A

A-Acca(P(i),Q(i))

Cross Entropy (CE) Since we need to compare probability distributions, we can make use of
divergence measures, which express how similar probability distributions are. While many of
such measures exist, a natural choice is to use cross entropy that is also used as the objective to
train the network. We compute cross entropy for each action by:

CEa(P
(i),Q(i)) = −

∑
r∈R

P(i)
a,r logQ

(i)
a,r

Then a single score is obtained by averaging individual cross entropies CEa over all actions:

CE =
1

|I|
1

|A|
∑
i∈I

∑
a∈A

CEa(P
(i),Q(i))

A small cross entropy indicates high similarity between prediction and ground truth and is there-
fore desirable. In contrast to accuracy (A-Acc), CE is not intuitively interpretable (how good is a CE
of say 0.2?) but it captures differences in the non-maximum parts of the distributions. Comparison
with respect to CE is enabled by considering the CE of one setting relative to others, with low CE
scores being desirable.

Correlation (Corr) The annotated data is ordinal, i.e. there exists an order from impossible over
implausible to plausible. By defining a distance between the three ratings we can transform a plau-
sibility distribution to a continuous, scalar value. This is done by a linear projection with a fixed
vector l = [−1, 0.2, 0.8] that expresses the distances between the ordinal values. For correlation, we
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do not compute action-wise scores but consider instances and actions jointly. Let the index j iterate
over instances as well as actions (hence the mappings i(j) and a(j)), then scores for an action can
be computed by: r(j) = max(0, ⟨l,Pi(j)

a(j)⟩) and q(j) = max(0, ⟨l,Qi(j)
a(j)⟩)

Now that predictions and ground truths are mapped to a sequence of scalars, we can access
the quality of the model’s predictions by employing Pearson’s correlation coefficient. The resulting
score indicates to which degree predicted and ground truth scores are linearly related. We consider
this a good measure as it is normalized between -1 and 1 and the top score of 1 or 100% is only
attained if scores are identical, except for a scaling factor. In practice, if scores are normalized, the
scaling factor becomes irrelevant.

The correlation coefficient is defined as follows:

Corr =

∑
j(q

(j) − q̄) ∗ (r(j) − r̄)√∑
j(q

(j) − q̄)2
√∑

i(r
(j) − r̄)2

A problem of the correlation score is that it requires the variance to be computable. If all predictions
(or all ground truth scores) are identical, the term (r(j) − r̄) is zero and causes division by zero. In
fact, this case rarely occurs in our experiments, we indicate it by “-”. The correlation coefficient
is both easy to interpret and captures differences across distributions. However, one might argue
that the projection vector is somewhat arbitrary.

5 Experiments

Next, we conduct a series of experiments assessing the quality of the trained networks and relating
them to meaningful baselines. First, we show some qualitative results, involving both instance only
and context. Quantitatively, we analyze performance concerning context, architecture and training
settings using the metrics defined above. For this, we follow the original splits of OpenImages
and apply the data processing described above, yielding 12262 training samples, 542 validation
samples and 471 test samples. Each of these subsets contains individual images, so the test scores
are computed on images that have not been seen before. Samples of the dataset can be found
online1. While a test set of 542 scenes might seem small, it should be considered that we required
all compatible actions to be annotated by the raters (unlike for validation and training samples).

5.1 Qualitative Evaluation

In Figure 5 we present a set of instance images with their associated action plausibilities computed
using the single-image InceptionV4-based model as well as the 2xRN50 model which uses the in-
stance image in conjunction with img+full context. Note the variety in the presented samples,
ranging from an outdoor cherry tree to different cup close-ups having vastly different illumina-
tions.

The presented samples indicate that the trained model generates useful predictions of the plau-
sibilities of the actions on these unseen samples (own photographs). In the top two rows, most
predictions are correct, while only some of them are questionable. The full cup of the coffee should
probably neither be stored away nor cleansed. Yet, “drink from” correctly received the largest pre-
dicted plausibility for this sample. The same is true for the cleanse item and the empty cups. If a
definitive decision is required, one could apply a minimal threshold and then pick the most likely
action. We observe that the plausibilities are strongly dependent on the object class. However,

1https://storage.googleapis.com/openimages/web/visualizer/index.html
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Figure 5: Top two rows: Qualitative samples generated using the InceptionV4-based network.
Bottom row: Samples generated using img+full context and the 2xRN50 network (the instance
image is indicated in red). All of these images were taken by us; thus they are neither part of any
subset of OpenImages nor any other dataset.
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this is not true for all cases. For example, the plausibility for drinking is zero for the empty cup
while it is the most likely action for the filled cup. Additionally, while the object class often seems
to determine the presence of plausible actions, there are fine-grained differences in the individual
plausibilities. These differences represent a crucial aspect of the visual common-sense knowledge
about household scenes that has been learned. In a robotic context, such differences could be used
to compare plausibilities of a given action across multiple objects and then pick the most suitable
object.

The qualitative samples that involve context (two bottom rows) suggest that the context has an
inhibitory effect on action plausibilities, i.e. the predicted plausibilities tend to be smaller. This
can be seen especially in the bottom row that involves the same object on different backgrounds.
Here the model predicts more potential actions and assigns slightly higher plausibilities if the back-
ground is white compared to the real-world background.

5.2 Quantitative Evaluation

Based on the previously defined baselines and metrics, we begin our quantitative analysis by com-
paring various training settings, augmentation strengths, and encoder architectures. In subsequent
experiments we address special questions investigating how many samples are sufficient, the role
of context, the impact of the encoder architecture and several design choices as part of an ablation.
Additionally, human performance using the same metrics is assessed and related to the computa-
tional models.

5.2.1 Ablation

Training Setting and Augmentation First we assess the impact of several training parameters,
introduced above, on the performance. The corresponding results are reported in Table 2. MR
refers to the minimal number of ratings required for a sample. While this is per default 1, in case
of MR = 2 the dataset size is reduced but samples are more reliable. Same rating (SR) means that
samples are only accepted when the raters agree (which only makes sense for MR > 1). Moreover,
we find that both, pre-training on ImageNet and the validity mask v in the loss function are crucial
for performance. In both cases, performance decreases compared to single rater samples. This
suggests that the increased variance introduced by a large dataset weighs more than the increased
reliability of multiple ratings per instance. This finding is in accordance with the work of Mahajan
et al. [30] where image classifiers were successfully trained on hashtags, despite strong label noise
of the latter. In augmentation we find a moderate strength of 2 to perform best.

Encoder The comparison of different encoder architectures, presented in Table 3, indicates that
larger models tend to perform better. We attribute this to two reasons: First, they can capture
more complex features. Second, their object detection performance is better. Given reliable object
detection, it is easier to exploit dataset biases. For a more detailed discussion of this we refer to
Sec. 5.2.3. Furthermore, we find all models to exhibit fast inference (25ms to 1s), allowing real-time
use for example in robotics.

Besides the shown experiments, we found the batch size to play a critical role for performance
and, thus, suggest keeping the batch size as large as possible. Additionally, we tried to use larger
images to improve performance without success. We hypothesize that the reason for this is that
models strongly benefit from the pre-trained ImageNet weights. This pre-training was done for
a fixed image size and the ImageNet dataset is fairly consistent with respect to scale. Hence, the

1on an Intel Core i7-2600 CPU with 3.4 GHz, image size: 256x256, batch-size: 1, using PyTorch 1.1.0
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Table 2: Ablation of different training settings (top) and augmentation strengths (bottom). Both
use the InceptionV4 encoder and context is ignored. VM: using a validity mask v, MR: minimal
number of ratings, SR: same ratings only, PT: pre-trained, σ: standard deviation.

Training settings / Augmentation

MR aug SR PT mask A-Acc (σ) CE (σ) Corr (σ)

- 2 - ✓ ✓ 45.3 (1.4) 0.253 (0.008) 72.5 (1.6)
2 2 - ✓ ✓ 39.3 (1.4) 0.290 (0.006) 65.6 (2.0)
2 2 ✓ ✓ ✓ 38.4 (1.2) 0.329 (0.007) 60.9 (2.2)
- 2 - - ✓ 24.2 (2.2) 0.410 (0.022) 48.4 (4.0)
- 2 - ✓ - 37.4 (1.1) 0.442 (0.018) 43.4 (1.8)

- 0 - ✓ ✓ 45.3 (2.2) 0.263 (0.016) 73.7 (0.9)
- 1 - ✓ ✓ 46.2 (1.0) 0.257 (0.009) 74.3 (0.9)
- 3 - ✓ ✓ 46.5 (1.2) 0.266 (0.016) 74.1 (1.1)
- 5 - ✓ ✓ 46.0 (0.6) 0.264 (0.016) 73.8 (1.1)
- 7 - ✓ ✓ 45.9 (2.5) 0.254 (0.011) 73.6 (1.0)
- 9 - ✓ ✓ 45.8 (1.2) 0.261 (0.014) 73.4 (1.0)

Table 3: Comparison of different encoders. Context is ignored, and augmentation set to 2. The last
line depicts the same setting as the first line of Table 2. T: Single sample inference time1.

Encoders

model A-Acc CE Corr

SqueezeNet [18] 38.8 0.326 60.2
RN18 [17] 45.1 0.277 70.3
RN50 [17] 44.9 0.300 68.9
RN101 [17] 44.4 0.265 70.9
RN152 [17] 45.3 0.275 73.5
Xception [5] 47.0 0.282 71.7
Inc3 [40] 41.1 0.321 67.8
Inc4 [41] 46.7 0.263 74.9
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Table 4: Evaluation per action for selected models (right) as well as comparison to baseline perfor-
mances (left). The mode baseline does not receive the image as an input but has access to the name
of the object shown. “No inp.” refers to a RN50 network where all input information is removed
by multiplying with zero. σ indicates the standard deviation after executing the training and test
ten times for each score. On the right, we show correlation scores for each action individually. 2

Corr (per-action)
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Inc4 ignore 46.1 (0.9) 0.257 (0.010) 74.0 (1.1) 54.0 85.3 16.7 70.9 84.2 76.4 23.7 94.0 90.9 65.7
No Inp. ignore 43.0 (1.4) 0.280 (0.010) 70.1 (1.6) 52.1 76.6 21.8 68.9 78.7 69.7 15.4 91.3 87.3 61.0
2xRN50 img+full 43.5 (2.1) 0.301 (0.019) 70.1 (1.8) 52.8 78.0 18.2 67.8 82.8 66.7 5.4 91.9 86.2 61.8

RN50 ignore 7.0 (0.0) 2.205 (0.023) - - - - - - - - - - -
Mode ignore 50.7 (0.0) 0.641 (0.000) 75.9 (0.0) 59.9 88.3 16.8 71.6 86.8 65.5 - 96.7 94.9 73.0

features encoded by the weights are optimized for this specific size. Possibly, our dataset is too
small to cause substantial changes in the features and hence it benefits from objects being provided
at the original scale.

5.2.2 Action-wise Evaluation and Comparison to Baselines

The results presented in Table 4 show improvement over the no-input-image baseline. This means
the models indeed use information from the presented images to improve predictions. In fact, the
no-input-image baseline considers all actions implausible, which is the best guess without know-
ing the image. However, the mode baseline outperforms our methods in Acc and Corr while our
method achieves better CE. This means that our method has advantages at predicting fine-grained
differences in the rating distribution, while for coarse accuracy, which neglects details in the distri-
bution, the mode baseline is good enough.

The class-wise scores give more insights. For most action classes, our methods yield a worse
accuracy (Acc) than the mode baseline. However, drink-from is a notable exception as it performs
much better than mode. This suggests that for drink-from, the image content is crucial and must
be considered to make a decision.

Considering the good performance of the mode baseline, it should be noted that it benefits from
several factors: First, it knows the object class being depicted, an information that other models
have no access to. Evidence for the importance of this is found in the gap between ImageNet
pre-trained and untrained models in the ablation (Table 2). Second, it knows the modes of the
rating distributions. Since these distributions are far from being uniform, the mode alone often is
a powerful predictor for the most likely rating. This means that the mode baseline has an unfair
advantage over our method: In practice the information about the object class being shown is
obviously not available as it would require a perfect object recognizer. Plugging in a sub-optimal

2In some cases the models predicted eat-contents always as impossible. These were ignored when computing the score
for eat-contents.
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Table 5: Performance on four selected objects: bottle, bowl, wok and box. “No inp.” refers to a
RN50 network where all input information is removed by multiplying with zero.

model context A-Acc CE Corr

Mode ignore 3.0 0.766 62.2
No Inp. ignore 0.0 3.068 47.2

Inc4 ignore 15.2 0.510 60.3
RN50 ignore 18.2 0.518 60.4
2xRN50 img+full 15.2 0.548 57.1

object recognizer would diminish the performance. Nonetheless, the mode baseline serves as a
useful anchor to relate scores to.

When we consider all ratings in the CE metric, the mode baseline does not perform as good
anymore. To some extent this is not surprising because the mode baseline always generates one-
hot distributions, i.e. vectors where all elements are zero except for one element that is one. Still
these fine-grained differences in plausibilities are crucial for many applications in robotics since
they enable the comparison and selection across different potential actions.

5.2.3 Selected Objects and Raters

In many cases the rating distribution is highly dependent on the object class, i.e. given the object
class we can make the correct prediction without having looked at the image. While this is a
natural phenomenon, it interferes with our analysis since we are particularly interested in cases
where the image content matters. Hence, we conduct an analysis with a subset of objects whose
plausibility rating distribution has a higher entropy. Concretely, these object classes are: bottle,
bowl, wok and box. The corresponding results are shown in Table 5. We see that the mode baseline
is strongly outperformed in terms of Acc and slightly outperformed on CE. This indicates that the
good performance of the mode baseline is an artifact of unbalanced rating distributions.

Similar to picking specific object classes, we can also limit the training data to specific raters. In
the most extreme case, we train and test only on data provided by a single rater. Corresponding
performance is reported in Table 6. Here we observe substantial improvements over the whole
dataset, despite the smaller training sets. Note that we did not cherry-pick this special rater, but
this observation remains consistent also when using other raters. However, this suggests a high
level of inter-individual differences between raters. From a human-robot interaction viewpoint
this is interesting and suggests that person-specific training might be needed to avoid clashes in
plausibility assessments of human versus robot. Potentially, it might be sufficient to condition at
runtime on specific persons by taking personal preferences and habits into account.

Additionally, we select a subset of 3 raters having an average pairwise agreement of 73.4. When
we use this set for training and test, we obtain the scores reported in Table 7. Here we see substan-
tially better performance in terms of CE. In addition, the gap between mode baseline and our
methods is larger. From the results presented in Tab 6 and Table 7 we conclude that consistency of
training and test data is a crucial property. Thus, to achieve better overall performance when using
more raters, data must be gathered in a more consistent way.

5.2.4 Rater Reliability

Having only compared scores obtained from different computational methods so far, a natural
question is: How consistent are the ratings provided by humans? For this, we apply the metrics in-
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Table 6: Performance of all eight individual
raters with Inc4 model ignoring context. D
denotes dataset size.

D A-Acc CE Corr

2894 73.9 0.092 88.6
2621 59.4 0.168 82.0
2365 70.6 0.109 88.4
1841 66.7 0.160 78.1
3300 72.2 0.086 80.9
1874 56.5 0.200 71.8
1914 73.0 0.097 85.7
1575 44.4 0.193 88.9

Table 7: Performance on three selected raters
having high agreement.

model context A-Acc CE Corr

Mode ignore 67.1 0.611 83.0
No Inp. ignore 1.8 2.087 -

Inc4 ignore 59.3 0.190 82.8
RN50 ignore 50.9 0.212 77.6
2xRN50 img+full 56.3 0.208 77.8
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Figure 6: Performance for different numbers of training samples.

troduced above on pairs of human raters. By averaging all pairwise scores we obtain the following:
Acc of 42.0, CE of 0.347 and a Corr of 44.8. While Acc is comparable to some models, in terms of
CE and Corr the raters perform significantly worse than the computational methods. If we require
a minimal intersection of 100 instances to compensate for statistically unreliable data points, we
obtain slightly better scores.

We also tracked the self-consistency of the raters by presenting selected instances twice within
the collection of all instances. Since the raters were free to select which samples they annotate, not
all of them annotated these instances. However, across those who did, the self-consistency varies
between 0.77 and 1.0 with an average of 0.90. The number of samples that were annotated twice
ranges from 1 to 26 with an average of 13.1.

5.2.5 Scalability

The number of training samples is a quantity that normally has a strong impact on the performance.
Since we are collecting the data, it is crucial to understand the effect of the training sample size to
avoid an insufficiently small dataset. Figure 6 provides an overview on the relationship between
training samples and performance in terms of correlation. It suggests that the dataset is large
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Table 8: Comparison of different context representations. σ indicates the standard deviation after
executing training and testing ten times for each score. BS: batch size.

model context BS A-Acc (σ) CE-mean (σ) Corr (σ)

RN50 ignore 32 42.1 (1.6) 0.301 (0.017) 70.3 (0.9)
Inc4 ignore 32 44.9 (1.6) 0.267 (0.012) 72.3 (1.0)

RN50 only-masked 32 30.4 (2.4) 0.425 (0.012) 49.3 (2.4)
RN50 only-full 32 36.8 (1.3) 0.374 (0.015) 62.4 (2.2)
2xRN50 img+full 24 43.9 (1.8) 0.304 (0.015) 71.2 (1.3)
2xRN50 img+masked 24 43.4 (2.2) 0.309 (0.021) 69.1 (2.6)
2xRN101 img+full 24 41.4 (2.2) 0.314 (0.013) 70.0 (1.6)
2xRN101 img+masked 24 42.3 (2.0) 0.305 (0.013) 69.4 (2.2)

enough and no major improvements could be expected from gathering more data.
We find that already a fairly small number of annotated scenes (around 3000) allows models to

attain a good performance. This is indicated by a high correlation of around 0.65 between predic-
tions and ground truth probabilities in Figure 6. More samples further improve on performance,
although at a smaller rate.

A straightforward way to obtain more ratings would be to hire more annotators. While this
would incur some cost, this clearly is possible due to the linear relationship between cost and
number of annotations. To extend the number of action categories, it would be necessary to define
compatibility with all 600 object classes from OpenImages for each new action. However, since the
set of useful actions (possibly in the hundreds) is limited we consider this feasible, too.

5.2.6 Context

Not only the appearance of an object is relevant for actions, potentially also the context can give
hints about the status of an object. Having introduced context representations in Sec. 4.4, here we
run an explicit comparison of the representations.

From Table 8 we observe that context with the instance object being masked (only-masked)
helps to predict actions but does not achieve the performance of showing the object itself (ignore
context). When the instance image is combined with a context representation (img+full), the Corr
and A-Acc slightly improve compared to RN50 ignoring context. However, this improvement is
fairly small. This is probably due to small parts of the context being included in the image itself.
The information that can be extracted from a bigger context is therefore negligible and does not
outweigh the problems of having more parameters. Relying exclusively on the context does not
seem to be a good idea. This is not surprising because the object appearance clearly gives hints
about possible actions. Using the larger 2xRN101 model does not improve on performance. This is
possibly due to its larger number of parameters making it more prone to overfitting.

5.3 Comparison with State-of-the-Art

As discussed in 2, our method can not be compared as a whole to state-of-the-art methods due
to the use of different labels for actions. Possibly, the most similar method to ours is the work
by Vu et al. [44]. Their approach shares with ours the goal of predicting actions from static im-
ages. We use the CNNs from our method and train them on their SUNAction dataset. We report
corresponding scores in Tab. 9. The CNNs we employ in our models clearly outperform the bag-of-
word and fisher-vector-based methods proposed by Vu et al. [44], when the CNNs are initialized

19



Table 9: Comparison of our classification model against state-of-the-art approaches. No augmen-
tation is used. The numbers in brackets indicate standard deviation over five runs.

model PT location mAP (σ)

RN18 - indoor 70.4 (18.4)
RN18 ✓ indoor 79.4 (6.9)
RN50 ✓ indoor 85.2 (7.1)
Inc4 ✓ indoor 84.9 (5.6)

RN18 - outdoor 73.4 (14.4)
RN18 ✓ outdoor 82.7 (4.0)
RN50 ✓ outdoor 78.4 (4.5)
Inc4 ✓ outdoor 81.7 (8.6)

Sift BoW [44] indoor 40.9
HOG BoW + HOG FV + CSIFT FV [44] indoor 61.0
Sift BoW [44] outdoor 31.8
HOG BoW + HOG FV + CSIFT FV [44] outdoor 52.0

with weights obtained through ImageNet pre-training. Note, this finding is largely unsurprising
given the dominance of CNNs for image recognition. Interestingly, the advantage of ImageNet
pre-training is fairly small although it strongly reduces variance. However, it links our approach
to the existing body of research.

6 Conclusion

Summary In this paper, we established a framework of how to gather action plausibility ratings,
creating a dataset called ”PlausiblAct”, transform them to train neural networks, and evaluate the
corresponding results.

After defining a set of ten actions and three ratings, we presented our sparse data collection
method relying on web techniques allowing for a fast and comparatively effortless data annota-
tion. Next, these ratings of object instances were transformed into distributions on which a neural
network could be trained to make action-oriented predictions. To assess the quality of these pre-
dictions we proposed three metrics capturing complementary quality aspects.

In our comparison of state-of-the-art feature encoders, we find the InceptionV4 network to be
suited best for the task. The experiments suggest that object-classification performance is still a
crucial factor for scoring action plausibilities. Combinations with context seem to improve the
performance slightly while context alone, ignoring the actual objects’ appearances, leads to fairly
bad action plausibility predictions. The experiments demonstrated that our system can operate on
data-in-the-wild. This means, that our system works well on images that were not intentionally shot
for our purpose but randomly chosen.

Limitations and Future Work The presented approach has some limitations. So far, the system
is limited to generating a plausibility distribution over a set of ten actions based on image input,
which needs to be extended in future works. We also found that inter-rater reliability is quite
low and might be improved. Consequently, a key question for follow-up work is how to design
data collection paradigms that enforce reliability and consistency across the raters more rigorously
than the presented one while extending the set of considered actions. Furthermore, the models we
employed are simple image classification models that are not specifically designed for reasoning.
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Future work might involve reasoning-oriented models, e.g. the relation network [38]. So far, we ex-
cluded scenes depicting humans from the data as far as possible. As a potential next step, showing
humans could increase the complexity of this or similar approaches as intentions would need to
be estimated, too. If humans are visible, action plausibility could be learned by observing human
behavior in video. While this would eliminate the necessity for labeling scenes, it might come with
its own challenges like action detection. Nonetheless, it is an alternative approach which might
be worth pursuing. For the actual robotic execution of a task, the desired poses of the respective
objects would need to be calculated and trajectories of the robot have to be generated, too. For both
of these problems working algorithms exist, hence here we had exclusively focused on inferring
actions in this paper not attempting to actually execute them on a machine.

In an interactive scenario, our method could be complemented by using reinforcement learning,
where our pre-trained models (involving strong augmentation) can help by providing a good prior
for selecting actions (the policy) that can later be refined in an interactive environment.

Such a supervised training of policies for reinforcement learning, specifically mapping from
images to motor torques, was shown to work well in previous research [26]. Another approach
employs simulated images in a supervised training setting to detect objects with the goal of using
this system as a policy for reinforcement learning [42]. Böhmer et al. [2] carried out a survey on
slow feature analysis- and autoencoders-based methods that learn state representations from visual
data for reinforcement learning.

Extensibility Currently, symbolic intermediate representations are entirely evaded by our method.
Yet, our system could be extended to be partially symbolic by explicitly detecting objects and their
states. Such symbolic information could then be processed together with instance images to infer
action plausibilities. However, this would require enumerating many possible states rather and
contradicts the original idea of a direct mapping.

An advantage of the proposed method is that it can be combined with other robotic algorithms.
This also holds true for the following example: Assume a scene involving a dirty and a clean cup
and the instruction “put cup into dishwasher”. Although it is obvious to humans that the instruc-
tion refers to the dirty cup, this common-sense knowledge is not available to the machine. By using
our method, the system can evaluate images of both cups and then pick the one for which the action
“cleanse” is more plausible. Thus, potential applications, where we expect action plausibilities to
be helpful, concern robotic action planning, where our method allows better disentangling action
preconditions needed by the planning operators. Thus, in conclusion, we believe that the here-
presented method has many potential use-cases and that it should be possible to extend it without
too much effort.
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[47] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive agents—a procedural perspective
relying on the predictability of object-action-complexes (oacs). Robotics and Autonomous Systems (RAS),
57(4):420–432, 2009. 4

[48] C. Ye, Y. Yang, C. Fermüller, and Y. Aloimonos. What can i do around here? deep functional scene
understanding for cognitive robots. In IEEE International Conference on Robotics and Automation (ICRA),
2017. 4

[49] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal relational reasoning in videos. In European
Conference on Computer Vision (ECCV), pages 803–818, 2018. 3

[50] Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about object affordances in a knowledge base representation.
In European Conference on Computer Vision (ECCV), pages 408–424. Springer, 2014. 4

[51] M. Zolfaghari, K. Singh, and T. Brox. Eco: Efficient convolutional network for online video understand-
ing. In European Conference on Computer Vision (ECCV), 2018. 3

24



Appendix

Augmentation

In the following we describe the operations used for augmentation. Here, a is an integer that
generally expresses the strength of augmentation to reduce complexity. N (µ, σ) denotes a Gaussian
distribution with mean µ and standard deviation σ:

Horizonal Flip Flip image horizontally with a probability of 0.5

Crop Sample random crop of size (H ′,W ′) from original image of size
(H,W )
W ′ = W − randint(1, 0.05 · a ·W ) and
H ′ = H − randint(1, 0.05 · a ·H)

Gamma correction Change image gamma by channel-wise random values
Gr, Gg, Gb which are computed according to:
Gr, Gg, Gb ∼ N (1, 0.05 · a) +Gall with Gall ∼ N (1, 0.1 · a)
Each value is clipped to be in the interval [0.1, 1.9] .

Color offset A channel-wise offset O is added to the image (values ranging
between 0 and 255) with O ∼ N (0, 4 · a).
The offset is applied after the gamma correction.

6.1 Object-Action Compatibility
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Toothbrush - - - - - ✓ - ✓ - -
Apple - ✓ - ✓ - ✓ - ✓ - -
Chopsticks - - - - - ✓ ✓ - - -
Croissant - ✓ - ✓ - - - ✓ - -
Cucumber - ✓ - ✓ - ✓ - ✓ - -
Radish - ✓ - ✓ - ✓ - ✓ - -
Hot dog - ✓ - ✓ - - - ✓ - -
Waffle - ✓ - ✓ - - - ✓ - -
Pancake - ✓ - ✓ - - - ✓ - -
Pretzel - ✓ - ✓ - - - ✓ - -
Bagel - ✓ - ✓ - - - ✓ - -
Teapot ✓ - - - - ✓ ✓ - - -
Popcorn - - - ✓ - - - ✓ - -
Burrito - ✓ - ✓ - - - ✓ - -
Scissors - - - - - - ✓ - - -
Chair - - ✓ - - - - - - -
Muffin - ✓ - ✓ - - - ✓ - -
Cookie - ✓ - ✓ - - - ✓ - -
Calculator - - - - - - ✓ - - -
Box - - - - - - ✓ ✓ ✓ ✓
Stapler - - - - - - ✓ - - -
Studio couch - - ✓ - - - - - - -
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Zucchini - ✓ - ✓ - ✓ - ✓ - -
Ladle ✓ - - - - ✓ ✓ - - -
Winter melon - ✓ - ✓ - ✓ - ✓ - -
Spatula - - - - - ✓ ✓ - - -
Pencil sharpener - - - - - - ✓ - - -
Eraser - - - - - - ✓ - - -
Tin can ✓ - - - - - ✓ ✓ ✓ -
Mug ✓ - - - - ✓ ✓ - - -
Can opener - - - - - ✓ ✓ - - -
Coffee cup ✓ - - - - ✓ ✓ - - -
Cutting board - - - - - ✓ ✓ - - -
Vase - - - - - ✓ ✓ - - -
Slow cooker - - - - - ✓ ✓ - ✓ -
Whisk - - - - - ✓ ✓ - - -
Salt and pepper shakers - - - - - ✓ ✓ - - -
French fries - ✓ - ✓ - - - ✓ - -
Tart - ✓ - ✓ - - - ✓ - -
Egg - - - ✓ - - - ✓ - -
Grape - ✓ - ✓ - ✓ - ✓ - -
Mixing bowl ✓ - - - - ✓ ✓ - - -
Hammer - - - - - - ✓ - - -
Sofa bed - - ✓ - - - - - - -
Adhesive tape - - - - - - ✓ - - -
Saucer - - - - ✓ ✓ ✓ - ✓ -
Drinking straw - - - - - ✓ ✓ - - -
Common fig - ✓ - ✓ - ✓ - ✓ - -
Cocktail shaker ✓ - - - - ✓ ✓ - - -
Artichoke - ✓ - ✓ - ✓ - ✓ - -
Knife - - - - - ✓ ✓ - - -
Bottle ✓ - - - - ✓ ✓ ✓ ✓ -
Bottle opener - - - - - ✓ ✓ - - -
Bowl ✓ - - - ✓ ✓ ✓ - ✓ -
Frying pan - - - - ✓ ✓ ✓ - ✓ -
Ring binder - - - - - - ✓ - - -
Plate - - - - ✓ ✓ ✓ - ✓ -
Pitcher ✓ - - - - ✓ ✓ - - -
Pencil case - - - - - - ✓ - - -
Kitchen knife - - - - - ✓ ✓ - - -
Plastic bag - - - - - - ✓ ✓ ✓ ✓
Potato - ✓ - ✓ - ✓ - ✓ - -
Pasta - - - ✓ - - - ✓ - -
Pumpkin - ✓ - ✓ - ✓ - ✓ - -
Pear - ✓ - ✓ - ✓ - ✓ - -
Infant bed - - ✓ - - - - - - -
Pizza - ✓ - ✓ - - - ✓ - -
Submarine sandwich - - - ✓ - - - ✓ - -
Loveseat - - ✓ - - - - - - -
Coffee table - - ✓ - - - - - - -
Taco - - - ✓ - - - ✓ - -
Strawberry - ✓ - ✓ - ✓ - ✓ - -
Tomato - ✓ - ✓ - ✓ - ✓ - -
Measuring cup - - - - - ✓ ✓ - - -
Paper cutter - - - - - - ✓ - - -
Wok - - - - ✓ ✓ ✓ - ✓ -
Jug - - - - - ✓ ✓ - - -
Pizza cutter - - - - - ✓ ✓ - - -
Bread - ✓ - ✓ - - - ✓ - -
Platter - - - - - ✓ ✓ - - -
Toilet paper - - - - - - ✓ - - -
Lemon - ✓ - ✓ - ✓ - ✓ - -
Banana - ✓ - ✓ - ✓ - ✓ - -
Wine glass ✓ - - - - ✓ ✓ - - -
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Countertop - - ✓ - - - - - - -
Waste container - - - - - - - - - ✓
Book - - - - - - ✓ - - -
Hamburger - - - ✓ - - - ✓ - -
Asparagus - ✓ - ✓ - ✓ - ✓ - -
Spoon - - - - ✓ ✓ ✓ - ✓ -
Oyster - - - ✓ - - - ✓ - -
Ice cream - - - ✓ - - - ✓ - -
Orange - ✓ - ✓ - ✓ - ✓ - -
Beaker ✓ - - - - - - ✓ - -
Peach - ✓ - ✓ - ✓ - ✓ - -
Fork - - - - ✓ ✓ ✓ - ✓ -
Cabbage - ✓ - ✓ - ✓ - ✓ - -
Carrot - ✓ - ✓ - ✓ - ✓ - -
Mango - ✓ - ✓ - ✓ - ✓ - -
Pineapple - ✓ - ✓ - ✓ - ✓ - -
Stool - - ✓ - - - - - - -
Envelope - - - - - - ✓ ✓ - -
Cake - - - ✓ - - - ✓ - -
Candy - - - ✓ - - - ✓ - -
Salad - ✓ - ✓ - ✓ - ✓ - -
Serving tray - - - - - ✓ ✓ - - -
Kitchen and dining room table - - ✓ - - - - - - -
Cake stand - - - - - ✓ ✓ - - -
Broccoli - ✓ - ✓ - ✓ - ✓ - -
Grapefruit - ✓ - ✓ - ✓ - ✓ - -
Bell pepper - ✓ - ✓ - ✓ - ✓ - -
Pomegranate - ✓ - ✓ - ✓ - ✓ - -
Doughnut - ✓ - ✓ - - - ✓ - -
Pen - - - - - - ✓ - - -
Watermelon - ✓ - ✓ - ✓ - ✓ - -
Cantaloupe - ✓ - ✓ - ✓ - ✓ - -
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