Start

Welcome

The Neural Data Science group led by Alexander Ecker works at the interface of machine learning and computational neuroscience. We develop new methods and algorithms to make sense of large-scale neuroscience data. Moreover, we work on novel approaches to computer vision based on insights we gain from biological vision.

Currently, the Neural Data Science Group has 6 PhD students and 1 postdocs.

We collaborate very closely with the groups of Matthias Bethge, Fabian Sinz and Thomas Euler at the University of Tübingen, as well as with Andreas Tolias at Baylor College of Medicine, Houston, TX, USA. We are currently establising collaborations at the Göttingen Campus with several groups, including Tim Gollisch, Christoph Kleinn, Eberhard Bodenschatz and Viola Priesemann.

Teaching

Summer term 2021

Introduction to Machine Learning

Alexander Ecker

Winter term 2020/21

Practical course on applying deep learning for image generation.

Alexander Ecker and Timo Lüddecke

Introduction to Deep Learning with a focus on image recognition

Alexander Ecker

Summer term 2020

Introduction to Machine Learning

Alexander Ecker

Winter term 2019/20

Introduction to Deep Learning with a focus on image recognition

Alexander Ecker

Bachelor’s and Master’s theses

General requirements

We expect prospective students to have substantial knowledge in machine learning, its mathematical foundations and Python programming. We therefore strongly recommend that students interested in doing their thesis in our lab should take our courses on Machine Learning, Deep Learning and took the Fachpraktikum Data Science. Exceptions are possible if well motivated.

Further recommended lectures are:

Please note, our thesis supervision capacity is limited and we receive more thesis inquiries than we are able supervise. Therefore, we have to select candidates. If you are interested, please write an email with the subject “Master’s thesis” or “Bachelor’s thesis” containing one to three sentences about what you would like to work on and your study record to Alexander Ecker.

We will get back to you within a few days. Otherwise, do not hesitate to remind us :).

Thesis offers

3D tracking of honey bees
Apply deep learning methods to track honey bees in video recordings
Supervisor: Alexander Ecker + Bardia Hejazi (MPI-DS)
Domain-specific self-supervised learning
Use self-supervised learning as pre-training in specific domains
Supervisor: Timo Lüddecke
Object-centric representation learning
Building a unified framework for object-centric representation learning models.
Supervisor: Marissa Weis
Self-Supervised Learning for HI-RES Tree Cover and Tree Class Segmentation
Learning generic features for remote sensing data, specifically forests
Supervisor: Timo Lüddecke and Nils Nölke
Self-supervised learning using view synthesis
Apply techniques for novel view synthesis with contrastive self-supervised learning
Supervisor: Timo Lüddecke

Research

2021

K. Lurz, M. Bashiri, K. Willeke, A. Jagadish, E. Wang, E. Y. Walker, S. A. Cadena, T. Muhammad, E. Cobos, A. S. Tolias, A. S. Ecker, F. H. Sinz
Generalization in data-driven models of primary visual cortex
International Conference on Learning Representations, 2021
@inproceedings{lurz2021generalization, title: {Generalization in data-driven models of primary visual cortex}, author: {K. Lurz, M. Bashiri, K. Willeke, A. Jagadish, E. Wang, E. Y. Walker, S. A. Cadena, T. Muhammad, E. Cobos, A. S. Tolias, A. S. Ecker, F. H. Sinz}, year: {2021}, booktitle: {International Conference on Learning Representations}, }
abs
.bib
K. Lurz, M. Bashiri, K. Willeke, A. Jagadish, E. Wang, E. Y. Walker, S. A. Cadena, T. Muhammad, E. Cobos, A. S. Tolias, A. S. Ecker, F. H. Sinz
Generalization in data-driven models of primary visual cortex
International Conference on Learning Representations, 2021
@inproceedings{lurz2021generalization, title: {Generalization in data-driven models of primary visual cortex}, author: {K. Lurz, M. Bashiri, K. Willeke, A. Jagadish, E. Wang, E. Y. Walker, S. A. Cadena, T. Muhammad, E. Cobos, A. S. Tolias, A. S. Ecker, F. H. Sinz}, year: {2021}, booktitle: {International Conference on Learning Representations}, }
abs
.bib
M. Burg, S. Cadena, G. Denfield, E. Walker, A. Tolias, M. Bethge, A. Ecker
Learning divisive normalization in primary visual cortex
PLOS Computational Biology, 2021
Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear neural response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by measurements of spiking responses in the brain and applicable to arbitrary stimuli. Here, we propose a DN model that is applicable to arbitrary input images. We test its ability to predict how neurons in macaque primary visual cortex (V1) respond to natural images, with a focus on nonlinear response properties within the classical receptive field. Our model consists of one layer of subunits followed by learned orientation-specific DN. It outperforms linear-nonlinear and wavelet-based feature representations and makes a significant step towards the performance of state-of-the-art convolutional neural network (CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of the nature of normalization. By inspecting the learned normalization pool of our model, we gained insights into a long-standing question about the tuning properties of DN that update the current textbook description: we found that within the receptive field oriented features were normalized preferentially by features with similar orientation rather than non-specifically as currently assumed.
@article{burg_2021_learning_divisive_normalization, title: {Learning divisive normalization in primary visual cortex}, author: {M. Burg, S. Cadena, G. Denfield, E. Walker, A. Tolias, M. Bethge, A. Ecker}, year: {2021}, journal: {PLOS Computational Biology}, }
abs
.bib
M. Burg, S. Cadena, G. Denfield, E. Walker, A. Tolias, M. Bethge, A. Ecker
Learning divisive normalization in primary visual cortex
PLOS Computational Biology, 2021
Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear neural response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by measurements of spiking responses in the brain and applicable to arbitrary stimuli. Here, we propose a DN model that is applicable to arbitrary input images. We test its ability to predict how neurons in macaque primary visual cortex (V1) respond to natural images, with a focus on nonlinear response properties within the classical receptive field. Our model consists of one layer of subunits followed by learned orientation-specific DN. It outperforms linear-nonlinear and wavelet-based feature representations and makes a significant step towards the performance of state-of-the-art convolutional neural network (CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of the nature of normalization. By inspecting the learned normalization pool of our model, we gained insights into a long-standing question about the tuning properties of DN that update the current textbook description: we found that within the receptive field oriented features were normalized preferentially by features with similar orientation rather than non-specifically as currently assumed.
@article{burg_2021_learning_divisive_normalization, title: {Learning divisive normalization in primary visual cortex}, author: {M. Burg, S. Cadena, G. Denfield, E. Walker, A. Tolias, M. Bethge, A. Ecker}, year: {2021}, journal: {PLOS Computational Biology}, }
abs
.bib
D. Kobak, Y. Bernaerts, M. Weis, F. Scala, A. Tolias, P. Berens
Sparse reduced-rank regression for exploratory visualisation of paired multivariate data
Journal of the Royal Statistical Society: Series C (Applied Statistics), 2021
@article{weis2021sparse, title: {Sparse reduced-rank regression for exploratory visualisation of paired multivariate data}, author: {D. Kobak, Y. Bernaerts, M. Weis, F. Scala, A. Tolias, P. Berens}, year: {2021}, journal: {Journal of the Royal Statistical Society: Series C (Applied Statistics)}, }
abs
.bib
D. Kobak, Y. Bernaerts, M. Weis, F. Scala, A. Tolias, P. Berens
Sparse reduced-rank regression for exploratory visualisation of paired multivariate data
Journal of the Royal Statistical Society: Series C (Applied Statistics), 2021
@article{weis2021sparse, title: {Sparse reduced-rank regression for exploratory visualisation of paired multivariate data}, author: {D. Kobak, Y. Bernaerts, M. Weis, F. Scala, A. Tolias, P. Berens}, year: {2021}, journal: {Journal of the Royal Statistical Society: Series C (Applied Statistics)}, }
abs
.bib

2020

V. Benson, A. Ecker
Assessing out-of-domain generalization for robust building damage detection
NeurIPS 2020 Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (AI+HADR 2020), 2020
@inproceedings{benson2020assessing, title: {Assessing out-of-domain generalization for robust building damage detection}, author: {V. Benson, A. Ecker}, year: {2020}, booktitle: {NeurIPS 2020 Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (AI+HADR 2020)}, }
abs
.bib
V. Benson, A. Ecker
Assessing out-of-domain generalization for robust building damage detection
NeurIPS 2020 Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (AI+HADR 2020), 2020
@inproceedings{benson2020assessing, title: {Assessing out-of-domain generalization for robust building damage detection}, author: {V. Benson, A. Ecker}, year: {2020}, booktitle: {NeurIPS 2020 Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (AI+HADR 2020)}, }
abs
.bib
T. Lüddecke, A. Ecker
CNNs efficiently learn long-range dependencies
NeurIPS 2020 Workshop on Shared Visual Representations in Human & Machine Intelligence, 2020
@inproceedings{luddeckecnns, title: {CNNs efficiently learn long-range dependencies}, author: {T. Lüddecke, A. Ecker}, year: {2020}, booktitle: {NeurIPS 2020 Workshop on Shared Visual Representations in Human & Machine Intelligence}, }
abs
.bib
T. Lüddecke, A. Ecker
CNNs efficiently learn long-range dependencies
NeurIPS 2020 Workshop on Shared Visual Representations in Human & Machine Intelligence, 2020
@inproceedings{luddeckecnns, title: {CNNs efficiently learn long-range dependencies}, author: {T. Lüddecke, A. Ecker}, year: {2020}, booktitle: {NeurIPS 2020 Workshop on Shared Visual Representations in Human & Machine Intelligence}, }
abs
.bib
T. Lüddecke, F. Wörgötter
Fine-grained action plausibility rating
Robotics and Autonomous Systems (RAS), 2020
@article{lueddecke20, title: {Fine-grained action plausibility rating}, author: {T. Lüddecke, F. Wörgötter}, year: {2020}, journal: {Robotics and Autonomous Systems (RAS)}, }
abs
.bib
T. Lüddecke, F. Wörgötter
Fine-grained action plausibility rating
Robotics and Autonomous Systems (RAS), 2020
@article{lueddecke20, title: {Fine-grained action plausibility rating}, author: {T. Lüddecke, F. Wörgötter}, year: {2020}, journal: {Robotics and Autonomous Systems (RAS)}, }
abs
.bib
M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, G. Martius
Optimizing Rank-based Metrics with Blackbox Differentiation
Computer Vision and Pattern Recognition (CVPR), 2020
@inproceedings{Rolínek2019a, title: {Optimizing Rank-based Metrics with Blackbox Differentiation}, author: {M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, G. Martius}, year: {2020}, booktitle: {Computer Vision and Pattern Recognition (CVPR)}, }
abs
.bib
M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, G. Martius
Optimizing Rank-based Metrics with Blackbox Differentiation
Computer Vision and Pattern Recognition (CVPR), 2020
@inproceedings{Rolínek2019a, title: {Optimizing Rank-based Metrics with Blackbox Differentiation}, author: {M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, G. Martius}, year: {2020}, booktitle: {Computer Vision and Pattern Recognition (CVPR)}, }
abs
.bib
I. Ustyuzhaninov, S. A. Cadena, E. Froudarakis, P. G. Fahey, E. Y. Walker, E. Cobos, J. Reimer, F. H. Sinz, A. S. Tolias, M. Bethge, A. S. Ecker
Rotation-invariant clustering of functional cell types in primary visual cortex
International Conference on Learning Representations (ICLR), 2020
@inproceedings{Ustyuzhaninov2020a, title: {Rotation-invariant clustering of functional cell types in primary visual cortex}, author: {I. Ustyuzhaninov, S. A. Cadena, E. Froudarakis, P. G. Fahey, E. Y. Walker, E. Cobos, J. Reimer, F. H. Sinz, A. S. Tolias, M. Bethge, A. S. Ecker}, year: {2020}, booktitle: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
I. Ustyuzhaninov, S. A. Cadena, E. Froudarakis, P. G. Fahey, E. Y. Walker, E. Cobos, J. Reimer, F. H. Sinz, A. S. Tolias, M. Bethge, A. S. Ecker
Rotation-invariant clustering of functional cell types in primary visual cortex
International Conference on Learning Representations (ICLR), 2020
@inproceedings{Ustyuzhaninov2020a, title: {Rotation-invariant clustering of functional cell types in primary visual cortex}, author: {I. Ustyuzhaninov, S. A. Cadena, E. Froudarakis, P. G. Fahey, E. Y. Walker, E. Cobos, J. Reimer, F. H. Sinz, A. S. Tolias, M. Bethge, A. S. Ecker}, year: {2020}, booktitle: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
Z. Zhao, D. Klindt, A. M. Chagas, K. P. Szatko, L. Rogerson, D. Protti, C. Behrens, D. Dalkara, T. Schubert, M. Bethge, K. Franke, P. Berens, A. S. Ecker, T. Euler
The temporal structure of the inner retina at a single glance
Scientific Reports, 2020
@article{Z*2020a, title: {The temporal structure of the inner retina at a single glance}, author: {Z. Zhao, D. Klindt, A. M. Chagas, K. P. Szatko, L. Rogerson, D. Protti, C. Behrens, D. Dalkara, T. Schubert, M. Bethge, K. Franke, P. Berens, A. S. Ecker, T. Euler}, year: {2020}, journal: {Scientific Reports}, }
abs
.bib
Z. Zhao, D. Klindt, A. M. Chagas, K. P. Szatko, L. Rogerson, D. Protti, C. Behrens, D. Dalkara, T. Schubert, M. Bethge, K. Franke, P. Berens, A. S. Ecker, T. Euler
The temporal structure of the inner retina at a single glance
Scientific Reports, 2020
@article{Z*2020a, title: {The temporal structure of the inner retina at a single glance}, author: {Z. Zhao, D. Klindt, A. M. Chagas, K. P. Szatko, L. Rogerson, D. Protti, C. Behrens, D. Dalkara, T. Schubert, M. Bethge, K. Franke, P. Berens, A. S. Ecker, T. Euler}, year: {2020}, journal: {Scientific Reports}, }
abs
.bib
M. A. Weis, K. Chitta, Y. Sharma, W. Brendel, M. Bethge, A. Geiger, A. S. Ecker
Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences
arXiv, 2020
@article{Weis2020, title: {Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences}, author: {M. A. Weis, K. Chitta, Y. Sharma, W. Brendel, M. Bethge, A. Geiger, A. S. Ecker}, year: {2020}, journal: {arXiv}, }
abs
.bib
M. A. Weis, K. Chitta, Y. Sharma, W. Brendel, M. Bethge, A. Geiger, A. S. Ecker
Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences
arXiv, 2020
@article{Weis2020, title: {Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences}, author: {M. A. Weis, K. Chitta, Y. Sharma, W. Brendel, M. Bethge, A. Geiger, A. S. Ecker}, year: {2020}, journal: {arXiv}, }
abs
.bib

2019

A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A. Cadena, E. Y. Walker, E. Cobos, J. Reimer, A. S. Tolias, M. Bethge
A rotation-equivariant convolutional neural network model of primary visual cortex
International Conference on Learning Representations (ICLR), 2019
@inproceedings{ecker_2019, title: {A rotation-equivariant convolutional neural network model of primary visual cortex}, author: {A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A. Cadena, E. Y. Walker, E. Cobos, J. Reimer, A. S. Tolias, M. Bethge}, year: {2019}, journal: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A. Cadena, E. Y. Walker, E. Cobos, J. Reimer, A. S. Tolias, M. Bethge
A rotation-equivariant convolutional neural network model of primary visual cortex
International Conference on Learning Representations (ICLR), 2019
@inproceedings{ecker_2019, title: {A rotation-equivariant convolutional neural network model of primary visual cortex}, author: {A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A. Cadena, E. Y. Walker, E. Cobos, J. Reimer, A. S. Tolias, M. Bethge}, year: {2019}, journal: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M. Bethge, W. Brendel
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Machine Learning for Autonomous Driving Workshop, NeurIPS 2019, 2019
@inproceedings{michaelis2019dragon, title: {Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming}, author: {C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M. Bethge, W. Brendel}, year: {2019}, booktitle: {Machine Learning for Autonomous Driving Workshop, NeurIPS 2019}, }
abs
.bib
C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M. Bethge, W. Brendel
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Machine Learning for Autonomous Driving Workshop, NeurIPS 2019, 2019
@inproceedings{michaelis2019dragon, title: {Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming}, author: {C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M. Bethge, W. Brendel}, year: {2019}, booktitle: {Machine Learning for Autonomous Driving Workshop, NeurIPS 2019}, }
abs
.bib
T. Lüddecke, T. Kulvicius, F. Wörgötter
Context-based Affordance Segmentation from 2D Images for Robot Action
Robotics and Autonomous Systems (RAS), 2019
@article{lueddecke19a, title: {Context-based Affordance Segmentation from 2D Images for Robot Action}, author: {T. Lüddecke, T. Kulvicius, F. Wörgötter}, year: {2019}, journal: {Robotics and Autonomous Systems (RAS)}, }
abs
.bib
T. Lüddecke, T. Kulvicius, F. Wörgötter
Context-based Affordance Segmentation from 2D Images for Robot Action
Robotics and Autonomous Systems (RAS), 2019
@article{lueddecke19a, title: {Context-based Affordance Segmentation from 2D Images for Robot Action}, author: {T. Lüddecke, T. Kulvicius, F. Wörgötter}, year: {2019}, journal: {Robotics and Autonomous Systems (RAS)}, }
abs
.bib
S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias, M. Bethge, A. S. Ecker
Deep convolutional models improve predictions of macaque V1 responses to natural images
PLoS Computational Biology, 2019
@article{Cadena2019, title: {Deep convolutional models improve predictions of macaque V1 responses to natural images}, author: {S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias, M. Bethge, A. S. Ecker}, year: {2019}, journal: {PLoS Computational Biology}, }
abs
.bib
S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias, M. Bethge, A. S. Ecker
Deep convolutional models improve predictions of macaque V1 responses to natural images
PLoS Computational Biology, 2019
@article{Cadena2019, title: {Deep convolutional models improve predictions of macaque V1 responses to natural images}, author: {S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias, M. Bethge, A. S. Ecker}, year: {2019}, journal: {PLoS Computational Biology}, }
abs
.bib
T. Lüddecke, A. Agostini, M. Fauth, M. Tamosiunaite, F. Wörgötter
Distributional Semantics of Objects in Visual Scenes in Comparison to Text
Artificial Intelligence, 2019
@article{lueddecke19, title: {Distributional Semantics of Objects in Visual Scenes in Comparison to Text}, author: {T. Lüddecke, A. Agostini, M. Fauth, M. Tamosiunaite, F. Wörgötter}, year: {2019}, journal: {Artificial Intelligence}, }
abs
.bib
T. Lüddecke, A. Agostini, M. Fauth, M. Tamosiunaite, F. Wörgötter
Distributional Semantics of Objects in Visual Scenes in Comparison to Text
Artificial Intelligence, 2019
@article{lueddecke19, title: {Distributional Semantics of Objects in Visual Scenes in Comparison to Text}, author: {T. Lüddecke, A. Agostini, M. Fauth, M. Tamosiunaite, F. Wörgötter}, year: {2019}, journal: {Artificial Intelligence}, }
abs
.bib
S. A. Cadena, F. H. Sinz, T. Muhammad, E. Froudarakis, E. Cobos, E. Y. Walker, J. Reimer, M. Bethge, A. Tolias, A. S. Ecker
How well do deep neural networks trained on object recognition characterize the mouse visual system?
NeurIPS Neuro AI Workshop, 2019
@inproceedings{Cadena2019b, title: {How well do deep neural networks trained on object recognition characterize the mouse visual system?}, author: {S. A. Cadena, F. H. Sinz, T. Muhammad, E. Froudarakis, E. Cobos, E. Y. Walker, J. Reimer, M. Bethge, A. Tolias, A. S. Ecker}, year: {2019}, journal: {NeurIPS Neuro AI Workshop}, }
abs
.bib
S. A. Cadena, F. H. Sinz, T. Muhammad, E. Froudarakis, E. Cobos, E. Y. Walker, J. Reimer, M. Bethge, A. Tolias, A. S. Ecker
How well do deep neural networks trained on object recognition characterize the mouse visual system?
NeurIPS Neuro AI Workshop, 2019
@inproceedings{Cadena2019b, title: {How well do deep neural networks trained on object recognition characterize the mouse visual system?}, author: {S. A. Cadena, F. H. Sinz, T. Muhammad, E. Froudarakis, E. Cobos, E. Y. Walker, J. Reimer, M. Bethge, A. Tolias, A. S. Ecker}, year: {2019}, journal: {NeurIPS Neuro AI Workshop}, }
abs
.bib
R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, W. Brendel
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
International Conference on Learning Representations (ICLR), 2019
@inproceedings{Geirhos2019a, title: {ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness}, author: {R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, W. Brendel}, year: {2019}, journal: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, W. Brendel
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
International Conference on Learning Representations (ICLR), 2019
@inproceedings{Geirhos2019a, title: {ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness}, author: {R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, W. Brendel}, year: {2019}, journal: {International Conference on Learning Representations (ICLR)}, }
abs
.bib
E. Y. Walker, F. H. Sinz, E. Froudarakis, P. G. Fahey, T. Muhammad, A. S. Ecker, E. Cobos, J. Reimer, X. Pitkow, A. S. Tolias
Inception loops discover what excites neurons most using deep predictive models
Nature Neuroscience, 2019
@article{Walker2019, title: {Inception loops discover what excites neurons most using deep predictive models}, author: {E. Y. Walker, F. H. Sinz, E. Froudarakis, P. G. Fahey, T. Muhammad, A. S. Ecker, E. Cobos, J. Reimer, X. Pitkow, A. S. Tolias}, year: {2019}, journal: {Nature Neuroscience}, }
abs
.bib
E. Y. Walker, F. H. Sinz, E. Froudarakis, P. G. Fahey, T. Muhammad, A. S. Ecker, E. Cobos, J. Reimer, X. Pitkow, A. S. Tolias
Inception loops discover what excites neurons most using deep predictive models
Nature Neuroscience, 2019
@article{Walker2019, title: {Inception loops discover what excites neurons most using deep predictive models}, author: {E. Y. Walker, F. H. Sinz, E. Froudarakis, P. G. Fahey, T. Muhammad, A. S. Ecker, E. Cobos, J. Reimer, X. Pitkow, A. S. Tolias}, year: {2019}, journal: {Nature Neuroscience}, }
abs
.bib
M. F. Burg, S. A. Cadena, G. H. Denfield, E. Y. Walker, A. S. Tolias, M. Bethge, A. S. Ecker
Learning Divisive Normalization in Primary Visual Cortex
bioRxiv, 2019
@article{burg2019learning, title: {Learning Divisive Normalization in Primary Visual Cortex}, author: {M. F. Burg, S. A. Cadena, G. H. Denfield, E. Y. Walker, A. S. Tolias, M. Bethge, A. S. Ecker}, year: {2019}, journal: {bioRxiv}, }
abs
.bib
Neural Data Science Group
Institute of Computer Science
University of Goettingen